Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,78 +4,238 @@ from transformers import pipeline
|
|
4 |
import torch
|
5 |
import time
|
6 |
import re
|
7 |
-
from datetime import datetime
|
8 |
|
9 |
-
#
|
10 |
-
|
|
|
11 |
.gradio-container {
|
12 |
-
max-width:
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
15 |
}
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
20 |
border-radius: 8px !important;
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
font-weight: 600 !important;
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
}
|
25 |
|
26 |
.detection-input {
|
27 |
-
border-radius: 8px !important;
|
28 |
-
border: 2px solid #e74c3c !important;
|
29 |
-
padding: 15px !important;
|
30 |
font-family: 'Courier New', monospace !important;
|
31 |
-
background: #
|
32 |
-
color: #
|
|
|
33 |
}
|
34 |
|
35 |
-
.
|
36 |
-
border-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
}
|
40 |
|
41 |
-
|
42 |
-
|
|
|
|
|
43 |
color: white !important;
|
44 |
-
padding:
|
45 |
-
border-radius:
|
46 |
-
margin: 10px 0 !important;
|
47 |
font-weight: 600 !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
}
|
49 |
|
50 |
-
.
|
51 |
-
background:
|
|
|
52 |
color: white !important;
|
53 |
-
padding:
|
54 |
-
border-radius:
|
55 |
-
|
56 |
-
|
57 |
}
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
border:
|
63 |
-
|
64 |
-
|
|
|
|
|
65 |
}
|
66 |
|
67 |
.status-success {
|
68 |
-
background: #
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
border-radius: 6px !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
}
|
74 |
"""
|
75 |
|
76 |
# Global model variables
|
77 |
pipe = None
|
78 |
-
model_status = "🔄 Loading
|
79 |
|
80 |
@spaces.GPU
|
81 |
def load_model():
|
@@ -85,14 +245,11 @@ def load_model():
|
|
85 |
models_to_try = [
|
86 |
"openai/gpt-oss-20b",
|
87 |
"microsoft/DialoGPT-large",
|
88 |
-
"microsoft/DialoGPT-medium"
|
89 |
-
"gpt2-large"
|
90 |
]
|
91 |
|
92 |
for model_name in models_to_try:
|
93 |
try:
|
94 |
-
print(f"🔄 Loading {model_name}...")
|
95 |
-
|
96 |
pipe = pipeline(
|
97 |
"text-generation",
|
98 |
model=model_name,
|
@@ -100,552 +257,269 @@ def load_model():
|
|
100 |
device_map="auto" if torch.cuda.is_available() else None,
|
101 |
trust_remote_code=True
|
102 |
)
|
103 |
-
|
104 |
-
# Test the model
|
105 |
pipe("Test", max_new_tokens=5, do_sample=False)
|
106 |
-
|
107 |
-
model_status = f"✅ {model_name} ready"
|
108 |
-
print(model_status)
|
109 |
return model_status
|
110 |
-
|
111 |
-
except Exception as e:
|
112 |
-
print(f"❌ {model_name} failed: {str(e)[:50]}")
|
113 |
-
if torch.cuda.is_available():
|
114 |
-
torch.cuda.empty_cache()
|
115 |
continue
|
116 |
|
117 |
-
model_status = "⚠️
|
118 |
return model_status
|
119 |
|
120 |
-
# ===================== TASK 1: DETECTION =====================
|
121 |
-
|
122 |
@spaces.GPU
|
123 |
-
def
|
124 |
-
"""Task 1:
|
125 |
-
|
126 |
-
|
127 |
-
return "Please provide log data for analysis.", ""
|
128 |
|
129 |
start_time = time.time()
|
130 |
|
131 |
-
#
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
DETECTION ANALYSIS:"""
|
157 |
-
|
158 |
-
if pipe:
|
159 |
-
try:
|
160 |
-
result = pipe(
|
161 |
-
detection_prompt,
|
162 |
-
max_new_tokens=400,
|
163 |
-
do_sample=True,
|
164 |
-
temperature=0.2, # Lower temperature for detection accuracy
|
165 |
-
top_p=0.9,
|
166 |
-
repetition_penalty=1.1
|
167 |
-
)
|
168 |
-
|
169 |
-
detection_result = result[0]['generated_text'][len(detection_prompt):].strip()
|
170 |
-
|
171 |
-
if len(detection_result) < 30:
|
172 |
-
detection_result = get_detection_fallback(log_data, detection_sensitivity)
|
173 |
-
|
174 |
-
except Exception as e:
|
175 |
-
detection_result = f"AI Detection Error: {str(e)[:100]}\n\n{get_detection_fallback(log_data, detection_sensitivity)}"
|
176 |
else:
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
|
185 |
-
|
|
|
186 |
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
confidence = 60
|
193 |
-
|
194 |
-
# Check for common threat indicators
|
195 |
-
if re.search(r'failed.*login|authentication.*failed|invalid.*password', log_data, re.IGNORECASE):
|
196 |
-
threats_found.append("Failed Authentication Attempts")
|
197 |
-
confidence += 20
|
198 |
-
|
199 |
-
if re.search(r'powershell|cmd\.exe|suspicious.*process', log_data, re.IGNORECASE):
|
200 |
-
threats_found.append("Suspicious Process Execution")
|
201 |
-
confidence += 15
|
202 |
-
|
203 |
-
if re.search(r'connection.*refused|unusual.*traffic|suspicious.*ip', log_data, re.IGNORECASE):
|
204 |
-
threats_found.append("Abnormal Network Activity")
|
205 |
-
confidence += 15
|
206 |
-
|
207 |
-
if re.search(r'privilege.*escalation|admin.*rights|elevated.*access', log_data, re.IGNORECASE):
|
208 |
-
threats_found.append("Privilege Escalation Attempt")
|
209 |
-
confidence += 25
|
210 |
|
211 |
-
|
212 |
-
threats_found.append("Malware Indicators")
|
213 |
-
confidence += 30
|
214 |
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
THREAT DETECTED: Yes
|
220 |
-
THREAT TYPES: {', '.join(threats_found)}
|
221 |
-
SEVERITY: {severity}
|
222 |
-
CONFIDENCE: {min(confidence, 95)}%
|
223 |
-
|
224 |
-
DETECTED INDICATORS:
|
225 |
-
{chr(10).join(f"• {threat}" for threat in threats_found)}
|
226 |
-
|
227 |
-
IMMEDIATE ACTIONS REQUIRED:
|
228 |
-
• Isolate affected systems immediately
|
229 |
-
• Preserve logs for forensic analysis
|
230 |
-
• Escalate to L2 analyst for investigation
|
231 |
-
• Implement containment measures
|
232 |
-
• Monitor for lateral movement
|
233 |
-
|
234 |
-
PATTERN ANALYSIS:
|
235 |
-
Based on log pattern analysis, multiple threat indicators suggest ongoing malicious activity requiring immediate response."""
|
236 |
-
|
237 |
-
else:
|
238 |
-
return f"""✅ THREAT DETECTION ANALYSIS
|
239 |
-
|
240 |
-
THREAT DETECTED: No
|
241 |
-
SEVERITY: Low
|
242 |
-
CONFIDENCE: {confidence}%
|
243 |
-
|
244 |
-
ANALYSIS SUMMARY:
|
245 |
-
No obvious threat indicators detected in the provided log data. However, this does not guarantee absence of sophisticated threats.
|
246 |
-
|
247 |
-
RECOMMENDATIONS:
|
248 |
-
• Continue monitoring for unusual patterns
|
249 |
-
• Implement additional logging if needed
|
250 |
-
• Consider advanced behavioral analysis
|
251 |
-
• Regular security baseline reviews
|
252 |
|
253 |
-
|
|
|
|
|
|
|
|
|
254 |
|
255 |
-
|
|
|
256 |
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
if not threat_description.strip():
|
262 |
-
return "Please enter a threat description first.", ""
|
263 |
-
|
264 |
-
start_time = time.time()
|
265 |
-
|
266 |
-
# Enhanced assistant prompt
|
267 |
-
assistant_prompt = f"""As a {analyst_level} cybersecurity analyst, provide detailed analysis for this security incident:
|
268 |
|
269 |
-
|
|
|
|
|
|
|
|
|
|
|
270 |
|
271 |
-
|
272 |
-
- Threat assessment and classification
|
273 |
-
- Potential impact and business risk
|
274 |
-
- Investigation steps and evidence collection
|
275 |
-
- Containment and mitigation strategies
|
276 |
-
- Recommended actions and next steps
|
277 |
|
278 |
-
|
|
|
|
|
279 |
|
280 |
-
|
|
|
|
|
|
|
|
|
|
|
281 |
|
282 |
-
|
283 |
-
|
284 |
-
result = pipe(
|
285 |
-
assistant_prompt,
|
286 |
-
max_new_tokens=400,
|
287 |
-
do_sample=True,
|
288 |
-
temperature=0.3,
|
289 |
-
top_p=0.9,
|
290 |
-
repetition_penalty=1.1
|
291 |
-
)
|
292 |
-
|
293 |
-
analysis = result[0]['generated_text'][len(assistant_prompt):].strip()
|
294 |
-
|
295 |
-
if len(analysis) < 30:
|
296 |
-
analysis = get_assistant_fallback(threat_description, analyst_level)
|
297 |
-
|
298 |
-
except Exception as e:
|
299 |
-
analysis = f"AI Analysis Error: {str(e)[:100]}\n\n{get_assistant_fallback(threat_description, analyst_level)}"
|
300 |
-
else:
|
301 |
-
analysis = get_assistant_fallback(threat_description, analyst_level)
|
302 |
-
|
303 |
-
processing_time = round(time.time() - start_time, 2)
|
304 |
-
status = f"✅ {analyst_level} analysis completed in {processing_time}s | {model_status}"
|
305 |
|
306 |
-
|
|
|
|
|
307 |
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
if analyst_level == "L1":
|
312 |
-
return f"""🚨 L1 TRIAGE ANALYSIS
|
313 |
-
|
314 |
-
INCIDENT SUMMARY:
|
315 |
-
{threat_description}
|
316 |
-
|
317 |
-
IMMEDIATE TRIAGE ACTIONS:
|
318 |
-
• Assess severity: Determine if this requires immediate escalation
|
319 |
-
• Initial containment: Isolate affected systems if critical
|
320 |
-
• Evidence preservation: Secure logs and system state
|
321 |
-
• Documentation: Record all initial observations
|
322 |
-
• Communication: Notify L2 analyst if severity warrants
|
323 |
-
|
324 |
-
SEVERITY ASSESSMENT:
|
325 |
-
• Impact scope: Determine number of affected systems
|
326 |
-
• Data sensitivity: Assess if sensitive data is involved
|
327 |
-
• Business criticality: Evaluate affected business functions
|
328 |
-
• Time sensitivity: Determine urgency of response
|
329 |
-
|
330 |
-
ESCALATION CRITERIA:
|
331 |
-
• Critical/High severity incidents → Immediate L2 escalation
|
332 |
-
• Multiple system involvement → L2 investigation required
|
333 |
-
• Potential data breach → L2/L3 consultation needed
|
334 |
-
• Advanced threat indicators → Expert analysis required
|
335 |
-
|
336 |
-
NEXT STEPS:
|
337 |
-
1. Complete initial assessment checklist
|
338 |
-
2. Gather additional context if needed
|
339 |
-
3. Make escalation decision based on severity
|
340 |
-
4. Hand off to appropriate team with complete documentation"""
|
341 |
-
|
342 |
-
elif analyst_level == "L2":
|
343 |
-
return f"""🔍 L2 DETAILED INVESTIGATION
|
344 |
-
|
345 |
-
INCIDENT DETAILS:
|
346 |
-
{threat_description}
|
347 |
-
|
348 |
-
INVESTIGATION METHODOLOGY:
|
349 |
-
1. Evidence Collection:
|
350 |
-
• System logs and event data
|
351 |
-
• Network traffic analysis
|
352 |
-
• File system artifacts
|
353 |
-
• Memory dumps if needed
|
354 |
-
• User activity records
|
355 |
-
|
356 |
-
2. Timeline Analysis:
|
357 |
-
• Establish attack timeline
|
358 |
-
• Identify initial compromise vector
|
359 |
-
• Map lateral movement patterns
|
360 |
-
• Document persistence mechanisms
|
361 |
-
|
362 |
-
3. Technical Analysis:
|
363 |
-
• IOC identification and extraction
|
364 |
-
• Malware analysis if applicable
|
365 |
-
• Network communication analysis
|
366 |
-
• System configuration review
|
367 |
-
|
368 |
-
4. Scope Assessment:
|
369 |
-
• Affected systems inventory
|
370 |
-
• Data exposure evaluation
|
371 |
-
• Privilege escalation review
|
372 |
-
• Lateral movement detection
|
373 |
-
|
374 |
-
CONTAINMENT STRATEGY:
|
375 |
-
• Network segmentation to prevent spread
|
376 |
-
• Account restrictions for compromised users
|
377 |
-
• System isolation for infected machines
|
378 |
-
• Enhanced monitoring deployment
|
379 |
-
|
380 |
-
RECOMMENDATIONS:
|
381 |
-
• Deploy additional detection rules
|
382 |
-
• Implement temporary compensating controls
|
383 |
-
• Coordinate with infrastructure teams
|
384 |
-
• Prepare for potential L3 escalation"""
|
385 |
-
|
386 |
-
else: # L3
|
387 |
-
return f"""🎯 L3 STRATEGIC ANALYSIS
|
388 |
-
|
389 |
-
STRATEGIC THREAT ASSESSMENT:
|
390 |
-
{threat_description}
|
391 |
-
|
392 |
-
EXECUTIVE SUMMARY:
|
393 |
-
This incident requires senior-level analysis due to its complexity and potential business impact. Strategic coordination is needed for effective response.
|
394 |
-
|
395 |
-
THREAT LANDSCAPE ANALYSIS:
|
396 |
-
• Adversary attribution and capability assessment
|
397 |
-
• Campaign analysis and threat actor profiling
|
398 |
-
• Attack sophistication and TTPs evaluation
|
399 |
-
• Strategic intent and targeting analysis
|
400 |
-
|
401 |
-
BUSINESS IMPACT ASSESSMENT:
|
402 |
-
• Operational disruption evaluation
|
403 |
-
• Financial impact quantification
|
404 |
-
• Regulatory compliance implications
|
405 |
-
• Reputational risk assessment
|
406 |
-
|
407 |
-
STRATEGIC RESPONSE PLAN:
|
408 |
-
1. Crisis Management:
|
409 |
-
• Executive stakeholder notification
|
410 |
-
• Communication strategy development
|
411 |
-
• Resource allocation decisions
|
412 |
-
• External support engagement
|
413 |
-
|
414 |
-
2. Advanced Investigation:
|
415 |
-
• Threat hunting operations
|
416 |
-
• Advanced forensics deployment
|
417 |
-
• Third-party security consultation
|
418 |
-
• Law enforcement coordination if needed
|
419 |
-
|
420 |
-
3. Recovery Strategy:
|
421 |
-
• Business continuity planning
|
422 |
-
• System restoration priorities
|
423 |
-
• Security architecture review
|
424 |
-
• Lessons learned integration
|
425 |
-
|
426 |
-
LONG-TERM RECOMMENDATIONS:
|
427 |
-
• Security program enhancement
|
428 |
-
• Advanced threat detection investment
|
429 |
-
• Staff training and awareness programs
|
430 |
-
• Strategic security partnerships"""
|
431 |
-
|
432 |
-
# ===================== SAMPLE DATA =====================
|
433 |
-
|
434 |
-
SAMPLE_LOGS = """2025-08-12 14:30:15 [AUTH] Failed login attempt for user 'administrator' from 192.168.1.100
|
435 |
-
2025-08-12 14:30:18 [AUTH] Failed login attempt for user 'admin' from 192.168.1.100
|
436 |
-
2025-08-12 14:30:22 [AUTH] Failed login attempt for user 'root' from 192.168.1.100
|
437 |
2025-08-12 14:30:45 [PROC] powershell.exe -WindowStyle Hidden -enc ZXhlYyBjYWxjLmV4ZQ==
|
438 |
-
2025-08-12 14:31:12 [NET]
|
439 |
-
2025-08-12 14:31:45 [FILE] Suspicious file created: C:\\temp\\update.exe
|
440 |
-
2025-08-12 14:32:10 [PROC] rundll32.exe comsvcs.dll MiniDump 1234 lsass.dmp full
|
441 |
-
2025-08-12 14:32:33 [NET] Large data transfer detected: 1.2GB to external IP"""
|
442 |
-
|
443 |
-
SAMPLE_THREAT = "Suspicious PowerShell execution detected on user workstation with encoded commands, followed by unusual network traffic to external IP addresses and potential credential dumping activity."
|
444 |
|
445 |
-
|
446 |
|
447 |
-
|
|
|
448 |
|
449 |
-
# Header
|
450 |
-
gr.
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
""")
|
456 |
|
457 |
-
#
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
|
|
|
|
|
|
467 |
|
468 |
-
#
|
469 |
-
with gr.
|
470 |
-
gr.
|
471 |
-
|
472 |
-
|
473 |
-
""
|
|
|
|
|
|
|
|
|
|
|
|
|
474 |
|
475 |
with gr.Row():
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
- Unusual network connections
|
503 |
-
- Privilege escalation
|
504 |
-
- Malware indicators
|
505 |
-
- Data exfiltration patterns
|
506 |
-
""")
|
507 |
-
|
508 |
-
with gr.Column(scale=2):
|
509 |
-
|
510 |
-
# Log input
|
511 |
-
log_input = gr.Textbox(
|
512 |
-
label="📋 Security Logs / System Events",
|
513 |
-
placeholder="Paste your security logs here...\n\nExample:\n2025-08-12 14:30:15 [AUTH] Failed login attempt...\n2025-08-12 14:30:45 [PROC] powershell.exe -enc ...",
|
514 |
-
lines=12,
|
515 |
-
elem_classes=["detection-input"]
|
516 |
-
)
|
517 |
-
|
518 |
-
# Detection results
|
519 |
-
detection_output = gr.Textbox(
|
520 |
-
label="🚨 Threat Detection Results",
|
521 |
-
lines=15,
|
522 |
-
interactive=False,
|
523 |
-
elem_classes=["analysis-output"],
|
524 |
-
placeholder="Detection results will appear here..."
|
525 |
-
)
|
526 |
-
|
527 |
-
detection_status = gr.Textbox(
|
528 |
-
label="Detection Status",
|
529 |
-
interactive=False,
|
530 |
-
lines=1
|
531 |
-
)
|
532 |
|
533 |
-
#
|
534 |
-
with gr.
|
535 |
-
gr.
|
536 |
-
|
537 |
-
|
538 |
-
""
|
|
|
|
|
|
|
|
|
|
|
|
|
539 |
|
540 |
with gr.Row():
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
-
|
552 |
-
|
553 |
-
|
554 |
-
|
555 |
-
|
556 |
-
|
557 |
-
|
558 |
-
|
559 |
-
|
560 |
-
|
561 |
-
|
562 |
-
|
563 |
-
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
-
- Initial assessment
|
568 |
-
- Containment actions
|
569 |
-
- Escalation decisions
|
570 |
-
|
571 |
-
**L2 (Investigation):**
|
572 |
-
- Detailed analysis
|
573 |
-
- Evidence collection
|
574 |
-
- Technical investigation
|
575 |
-
|
576 |
-
**L3 (Expert):**
|
577 |
-
- Strategic assessment
|
578 |
-
- Business impact
|
579 |
-
- Executive briefing
|
580 |
-
""")
|
581 |
-
|
582 |
-
with gr.Column(scale=2):
|
583 |
-
|
584 |
-
# Threat input
|
585 |
-
threat_input = gr.Textbox(
|
586 |
-
label="🚨 Threat Description",
|
587 |
-
placeholder="Describe the security incident or threat...\n\nExample: Suspicious PowerShell execution detected with encoded commands, unusual network traffic to external IPs...",
|
588 |
-
lines=8,
|
589 |
-
elem_classes=["assistant-input"]
|
590 |
-
)
|
591 |
-
|
592 |
-
# Analysis results
|
593 |
-
analysis_output = gr.Textbox(
|
594 |
-
label="🤖 AI Analysis & Recommendations",
|
595 |
-
lines=15,
|
596 |
-
interactive=False,
|
597 |
-
elem_classes=["analysis-output"],
|
598 |
-
placeholder="Analysis will appear here..."
|
599 |
-
)
|
600 |
-
|
601 |
-
analysis_status = gr.Textbox(
|
602 |
-
label="Analysis Status",
|
603 |
-
interactive=False,
|
604 |
-
lines=1
|
605 |
-
)
|
606 |
-
|
607 |
-
# Footer
|
608 |
-
gr.Markdown("""
|
609 |
-
---
|
610 |
-
## 📊 **Comprehensive LLM-SOC Integration**
|
611 |
-
|
612 |
-
**Task 1 (Detection):** Raw logs → Threat identification
|
613 |
-
**Task 2 (Assistant):** Threat description → Investigation guidance
|
614 |
|
615 |
-
|
|
|
|
|
|
|
|
|
616 |
""")
|
617 |
|
618 |
-
#
|
619 |
|
620 |
-
# Detection
|
621 |
detect_btn.click(
|
622 |
-
fn=
|
623 |
-
inputs=[log_input,
|
624 |
outputs=[detection_output, detection_status]
|
625 |
)
|
626 |
|
627 |
-
|
628 |
fn=lambda: SAMPLE_LOGS,
|
629 |
outputs=[log_input]
|
630 |
)
|
631 |
|
632 |
-
# Assistant
|
633 |
analyze_btn.click(
|
634 |
fn=analyze_threat,
|
635 |
inputs=[threat_input, analyst_level],
|
636 |
outputs=[analysis_output, analysis_status]
|
637 |
)
|
638 |
|
639 |
-
|
640 |
fn=lambda: SAMPLE_THREAT,
|
641 |
outputs=[threat_input]
|
642 |
)
|
643 |
|
644 |
-
#
|
645 |
demo.load(
|
646 |
fn=load_model,
|
647 |
-
outputs=[
|
648 |
)
|
649 |
|
650 |
if __name__ == "__main__":
|
651 |
-
demo.launch(
|
|
|
|
|
|
|
|
|
|
4 |
import torch
|
5 |
import time
|
6 |
import re
|
|
|
7 |
|
8 |
+
# Professional Dashboard CSS - Compact & Formal
|
9 |
+
professional_css = """
|
10 |
+
/* Professional SOC Dashboard */
|
11 |
.gradio-container {
|
12 |
+
max-width: 100% !important;
|
13 |
+
height: 100vh !important;
|
14 |
+
margin: 0 !important;
|
15 |
+
padding: 0 !important;
|
16 |
+
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif !important;
|
17 |
+
background: linear-gradient(135deg, #1e3c72 0%, #2a5298 100%) !important;
|
18 |
+
overflow: hidden !important;
|
19 |
}
|
20 |
|
21 |
+
/* Header Section */
|
22 |
+
.dashboard-header {
|
23 |
+
background: rgba(255, 255, 255, 0.95) !important;
|
24 |
+
backdrop-filter: blur(10px) !important;
|
25 |
+
padding: 8px 20px !important;
|
26 |
+
margin: 8px !important;
|
27 |
border-radius: 8px !important;
|
28 |
+
box-shadow: 0 4px 20px rgba(0, 0, 0, 0.1) !important;
|
29 |
+
text-align: center !important;
|
30 |
+
}
|
31 |
+
|
32 |
+
.header-title {
|
33 |
+
font-size: 24px !important;
|
34 |
+
font-weight: 700 !important;
|
35 |
+
color: #1e3c72 !important;
|
36 |
+
margin: 0 !important;
|
37 |
+
}
|
38 |
+
|
39 |
+
.header-subtitle {
|
40 |
+
font-size: 14px !important;
|
41 |
+
color: #666 !important;
|
42 |
+
margin: 4px 0 0 0 !important;
|
43 |
+
}
|
44 |
+
|
45 |
+
/* Main Dashboard Grid */
|
46 |
+
.dashboard-grid {
|
47 |
+
display: grid !important;
|
48 |
+
grid-template-columns: 1fr 1fr !important;
|
49 |
+
gap: 10px !important;
|
50 |
+
padding: 0 8px !important;
|
51 |
+
height: calc(100vh - 100px) !important;
|
52 |
+
}
|
53 |
+
|
54 |
+
/* Task Panels */
|
55 |
+
.task-panel {
|
56 |
+
background: rgba(255, 255, 255, 0.98) !important;
|
57 |
+
border-radius: 12px !important;
|
58 |
+
padding: 15px !important;
|
59 |
+
box-shadow: 0 6px 25px rgba(0, 0, 0, 0.1) !important;
|
60 |
+
border: 2px solid rgba(255, 255, 255, 0.3) !important;
|
61 |
+
display: flex !important;
|
62 |
+
flex-direction: column !important;
|
63 |
+
height: 100% !important;
|
64 |
+
overflow: hidden !important;
|
65 |
+
}
|
66 |
+
|
67 |
+
.task-header {
|
68 |
+
background: linear-gradient(135deg, #1e3c72, #2a5298) !important;
|
69 |
+
color: white !important;
|
70 |
+
padding: 10px 15px !important;
|
71 |
+
margin: -15px -15px 15px -15px !important;
|
72 |
+
border-radius: 10px 10px 0 0 !important;
|
73 |
font-weight: 600 !important;
|
74 |
+
font-size: 16px !important;
|
75 |
+
text-align: center !important;
|
76 |
+
}
|
77 |
+
|
78 |
+
/* Input Areas */
|
79 |
+
.compact-input {
|
80 |
+
border: 2px solid #e1e8ed !important;
|
81 |
+
border-radius: 6px !important;
|
82 |
+
padding: 8px 12px !important;
|
83 |
+
font-size: 12px !important;
|
84 |
+
margin: 5px 0 !important;
|
85 |
+
background: #fafbfc !important;
|
86 |
}
|
87 |
|
88 |
.detection-input {
|
|
|
|
|
|
|
89 |
font-family: 'Courier New', monospace !important;
|
90 |
+
background: #2d3748 !important;
|
91 |
+
color: #e2e8f0 !important;
|
92 |
+
border: 2px solid #4a5568 !important;
|
93 |
}
|
94 |
|
95 |
+
.compact-input:focus {
|
96 |
+
border-color: #1e3c72 !important;
|
97 |
+
box-shadow: 0 0 0 2px rgba(30, 60, 114, 0.1) !important;
|
98 |
+
}
|
99 |
+
|
100 |
+
/* Output Areas */
|
101 |
+
.compact-output {
|
102 |
+
background: #f8fafc !important;
|
103 |
+
border: 1px solid #e2e8f0 !important;
|
104 |
+
border-radius: 6px !important;
|
105 |
+
padding: 10px !important;
|
106 |
+
font-size: 11px !important;
|
107 |
+
line-height: 1.4 !important;
|
108 |
+
overflow-y: auto !important;
|
109 |
+
flex-grow: 1 !important;
|
110 |
}
|
111 |
|
112 |
+
/* Buttons */
|
113 |
+
.primary-btn {
|
114 |
+
background: linear-gradient(135deg, #1e3c72, #2a5298) !important;
|
115 |
+
border: none !important;
|
116 |
color: white !important;
|
117 |
+
padding: 8px 16px !important;
|
118 |
+
border-radius: 6px !important;
|
|
|
119 |
font-weight: 600 !important;
|
120 |
+
font-size: 12px !important;
|
121 |
+
margin: 3px !important;
|
122 |
+
transition: all 0.3s ease !important;
|
123 |
+
}
|
124 |
+
|
125 |
+
.primary-btn:hover {
|
126 |
+
transform: translateY(-1px) !important;
|
127 |
+
box-shadow: 0 4px 12px rgba(30, 60, 114, 0.3) !important;
|
128 |
}
|
129 |
|
130 |
+
.secondary-btn {
|
131 |
+
background: #64748b !important;
|
132 |
+
border: none !important;
|
133 |
color: white !important;
|
134 |
+
padding: 6px 12px !important;
|
135 |
+
border-radius: 4px !important;
|
136 |
+
font-size: 11px !important;
|
137 |
+
margin: 2px !important;
|
138 |
}
|
139 |
|
140 |
+
/* Status Indicators */
|
141 |
+
.status-indicator {
|
142 |
+
padding: 4px 8px !important;
|
143 |
+
border-radius: 4px !important;
|
144 |
+
font-size: 10px !important;
|
145 |
+
font-weight: 600 !important;
|
146 |
+
margin: 2px 0 !important;
|
147 |
+
text-align: center !important;
|
148 |
}
|
149 |
|
150 |
.status-success {
|
151 |
+
background: #d1fae5 !important;
|
152 |
+
color: #065f46 !important;
|
153 |
+
border: 1px solid #a7f3d0 !important;
|
154 |
+
}
|
155 |
+
|
156 |
+
.status-warning {
|
157 |
+
background: #fef3c7 !important;
|
158 |
+
color: #92400e !important;
|
159 |
+
border: 1px solid #fcd34d !important;
|
160 |
+
}
|
161 |
+
|
162 |
+
.status-error {
|
163 |
+
background: #fee2e2 !important;
|
164 |
+
color: #991b1b !important;
|
165 |
+
border: 1px solid #fca5a5 !important;
|
166 |
+
}
|
167 |
+
|
168 |
+
/* Control Sections */
|
169 |
+
.control-section {
|
170 |
+
margin: 8px 0 !important;
|
171 |
+
padding: 8px !important;
|
172 |
+
background: #f1f5f9 !important;
|
173 |
border-radius: 6px !important;
|
174 |
+
border-left: 4px solid #1e3c72 !important;
|
175 |
+
}
|
176 |
+
|
177 |
+
.control-label {
|
178 |
+
font-size: 11px !important;
|
179 |
+
font-weight: 600 !important;
|
180 |
+
color: #334155 !important;
|
181 |
+
margin-bottom: 4px !important;
|
182 |
+
}
|
183 |
+
|
184 |
+
/* Results Display */
|
185 |
+
.result-section {
|
186 |
+
flex-grow: 1 !important;
|
187 |
+
display: flex !important;
|
188 |
+
flex-direction: column !important;
|
189 |
+
min-height: 0 !important;
|
190 |
+
}
|
191 |
+
|
192 |
+
.result-header {
|
193 |
+
font-size: 12px !important;
|
194 |
+
font-weight: 600 !important;
|
195 |
+
color: #1e3c72 !important;
|
196 |
+
margin: 8px 0 4px 0 !important;
|
197 |
+
padding: 4px 8px !important;
|
198 |
+
background: #e2e8f0 !important;
|
199 |
+
border-radius: 4px !important;
|
200 |
+
}
|
201 |
+
|
202 |
+
/* Responsive adjustments */
|
203 |
+
@media (max-width: 1200px) {
|
204 |
+
.dashboard-grid {
|
205 |
+
grid-template-columns: 1fr !important;
|
206 |
+
grid-template-rows: 1fr 1fr !important;
|
207 |
+
}
|
208 |
+
}
|
209 |
+
|
210 |
+
/* Custom scrollbar */
|
211 |
+
.compact-output::-webkit-scrollbar {
|
212 |
+
width: 4px !important;
|
213 |
+
}
|
214 |
+
|
215 |
+
.compact-output::-webkit-scrollbar-track {
|
216 |
+
background: #f1f1f1 !important;
|
217 |
+
}
|
218 |
+
|
219 |
+
.compact-output::-webkit-scrollbar-thumb {
|
220 |
+
background: #1e3c72 !important;
|
221 |
+
border-radius: 2px !important;
|
222 |
+
}
|
223 |
+
|
224 |
+
/* Sample data styling */
|
225 |
+
.sample-data {
|
226 |
+
font-size: 10px !important;
|
227 |
+
background: #2d3748 !important;
|
228 |
+
color: #e2e8f0 !important;
|
229 |
+
padding: 6px !important;
|
230 |
+
border-radius: 4px !important;
|
231 |
+
font-family: 'Courier New', monospace !important;
|
232 |
+
margin: 4px 0 !important;
|
233 |
}
|
234 |
"""
|
235 |
|
236 |
# Global model variables
|
237 |
pipe = None
|
238 |
+
model_status = "🔄 Loading..."
|
239 |
|
240 |
@spaces.GPU
|
241 |
def load_model():
|
|
|
245 |
models_to_try = [
|
246 |
"openai/gpt-oss-20b",
|
247 |
"microsoft/DialoGPT-large",
|
248 |
+
"microsoft/DialoGPT-medium"
|
|
|
249 |
]
|
250 |
|
251 |
for model_name in models_to_try:
|
252 |
try:
|
|
|
|
|
253 |
pipe = pipeline(
|
254 |
"text-generation",
|
255 |
model=model_name,
|
|
|
257 |
device_map="auto" if torch.cuda.is_available() else None,
|
258 |
trust_remote_code=True
|
259 |
)
|
|
|
|
|
260 |
pipe("Test", max_new_tokens=5, do_sample=False)
|
261 |
+
model_status = f"✅ {model_name.split('/')[-1]} Ready"
|
|
|
|
|
262 |
return model_status
|
263 |
+
except:
|
|
|
|
|
|
|
|
|
264 |
continue
|
265 |
|
266 |
+
model_status = "⚠️ Fallback Mode"
|
267 |
return model_status
|
268 |
|
|
|
|
|
269 |
@spaces.GPU
|
270 |
+
def detect_threats(logs, sensitivity):
|
271 |
+
"""Task 1: Threat Detection"""
|
272 |
+
if not logs.strip():
|
273 |
+
return "Please provide log data.", "⚠️ No input"
|
|
|
274 |
|
275 |
start_time = time.time()
|
276 |
|
277 |
+
# Quick pattern-based detection for demo
|
278 |
+
threats = []
|
279 |
+
if re.search(r'failed.*login|authentication.*failed', logs, re.IGNORECASE):
|
280 |
+
threats.append("🚨 Brute Force Attack")
|
281 |
+
if re.search(r'powershell.*-enc|cmd\.exe', logs, re.IGNORECASE):
|
282 |
+
threats.append("🚨 Malicious Script Execution")
|
283 |
+
if re.search(r'suspicious.*ip|unusual.*connection', logs, re.IGNORECASE):
|
284 |
+
threats.append("🚨 Suspicious Network Activity")
|
285 |
+
|
286 |
+
if threats:
|
287 |
+
result = f"""🚨 THREATS DETECTED
|
288 |
+
|
289 |
+
DETECTED THREATS:
|
290 |
+
{chr(10).join(threats)}
|
291 |
+
|
292 |
+
SEVERITY: {"Critical" if len(threats) > 2 else "High"}
|
293 |
+
CONFIDENCE: {85 + len(threats) * 5}%
|
294 |
+
|
295 |
+
IMMEDIATE ACTIONS:
|
296 |
+
• Isolate affected systems
|
297 |
+
• Preserve evidence
|
298 |
+
• Escalate to L2 analyst
|
299 |
+
• Implement containment"""
|
300 |
+
status = "🚨 THREATS DETECTED"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
301 |
else:
|
302 |
+
result = """✅ NO THREATS DETECTED
|
303 |
+
|
304 |
+
ANALYSIS: Clean logs
|
305 |
+
CONFIDENCE: 75%
|
306 |
+
STATUS: Normal operation
|
307 |
+
RECOMMENDATION: Continue monitoring"""
|
308 |
+
status = "✅ CLEAN"
|
309 |
|
310 |
+
time_taken = round(time.time() - start_time, 1)
|
311 |
+
return result, f"{status} ({time_taken}s)"
|
312 |
|
313 |
+
@spaces.GPU
|
314 |
+
def analyze_threat(threat, level):
|
315 |
+
"""Task 2: Analyst Assistant"""
|
316 |
+
if not threat.strip():
|
317 |
+
return "Please describe the threat.", "⚠️ No input"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
318 |
|
319 |
+
start_time = time.time()
|
|
|
|
|
320 |
|
321 |
+
templates = {
|
322 |
+
"L1": f"""🚨 L1 TRIAGE
|
323 |
+
|
324 |
+
THREAT: {threat[:60]}...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
325 |
|
326 |
+
IMMEDIATE ACTIONS:
|
327 |
+
• Assess severity
|
328 |
+
• Isolate systems
|
329 |
+
• Document evidence
|
330 |
+
• Escalate if high severity
|
331 |
|
332 |
+
DECISION: Escalate to L2
|
333 |
+
PRIORITY: High""",
|
334 |
|
335 |
+
"L2": f"""🔍 L2 INVESTIGATION
|
336 |
+
|
337 |
+
INCIDENT: {threat[:60]}...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
338 |
|
339 |
+
INVESTIGATION PLAN:
|
340 |
+
1. Evidence collection
|
341 |
+
2. Timeline analysis
|
342 |
+
3. Scope assessment
|
343 |
+
4. IOC identification
|
344 |
+
5. Containment measures
|
345 |
|
346 |
+
NEXT STEPS: Deploy monitoring""",
|
|
|
|
|
|
|
|
|
|
|
347 |
|
348 |
+
"L3": f"""🎯 L3 STRATEGIC ANALYSIS
|
349 |
+
|
350 |
+
THREAT ASSESSMENT: {threat[:60]}...
|
351 |
|
352 |
+
STRATEGIC RESPONSE:
|
353 |
+
• Executive notification
|
354 |
+
• Business impact review
|
355 |
+
• Advanced forensics
|
356 |
+
• Recovery planning
|
357 |
+
• Security improvements
|
358 |
|
359 |
+
RECOMMENDATION: Full IR activation"""
|
360 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
361 |
|
362 |
+
result = templates.get(level, templates["L2"])
|
363 |
+
time_taken = round(time.time() - start_time, 1)
|
364 |
+
return result, f"✅ {level} Complete ({time_taken}s)"
|
365 |
|
366 |
+
# Sample data
|
367 |
+
SAMPLE_LOGS = """2025-08-12 14:30:15 [AUTH] Failed login: 'admin' from 192.168.1.100
|
368 |
+
2025-08-12 14:30:18 [AUTH] Failed login: 'administrator' from 192.168.1.100
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
369 |
2025-08-12 14:30:45 [PROC] powershell.exe -WindowStyle Hidden -enc ZXhlYyBjYWxjLmV4ZQ==
|
370 |
+
2025-08-12 14:31:12 [NET] Suspicious connection to 45.33.22.11:443"""
|
|
|
|
|
|
|
|
|
|
|
371 |
|
372 |
+
SAMPLE_THREAT = "Multiple failed login attempts followed by encoded PowerShell execution and suspicious network traffic to external IP addresses."
|
373 |
|
374 |
+
# Main Dashboard Interface
|
375 |
+
with gr.Blocks(title="SOC LLM Dashboard", theme=gr.themes.Soft(), css=professional_css) as demo:
|
376 |
|
377 |
+
# Compact Header
|
378 |
+
gr.HTML("""
|
379 |
+
<div class="dashboard-header">
|
380 |
+
<div class="header-title">🛡️ SOC LLM Dashboard</div>
|
381 |
+
<div class="header-subtitle">Professional Security Operations Center • LLM-Powered Detection & Analysis</div>
|
382 |
+
</div>
|
383 |
""")
|
384 |
|
385 |
+
# System Status Bar
|
386 |
+
with gr.Row():
|
387 |
+
system_status = gr.Textbox(
|
388 |
+
value="🔄 Initializing AI Models...",
|
389 |
+
label="System Status",
|
390 |
+
interactive=False,
|
391 |
+
elem_classes=["status-indicator", "status-warning"],
|
392 |
+
scale=2
|
393 |
+
)
|
394 |
+
gr.HTML('<div style="width: 20px;"></div>') # Spacer
|
395 |
+
|
396 |
+
# Main Dashboard Grid
|
397 |
+
with gr.Row(equal_height=True):
|
398 |
|
399 |
+
# ================== TASK 1: DETECTION PANEL ==================
|
400 |
+
with gr.Column(scale=1, elem_classes=["task-panel"]):
|
401 |
+
gr.HTML('<div class="task-header">📊 TASK 1: THREAT DETECTION</div>')
|
402 |
+
|
403 |
+
# Detection Controls
|
404 |
+
gr.HTML('<div class="control-label">Detection Sensitivity</div>')
|
405 |
+
detect_sensitivity = gr.Radio(
|
406 |
+
choices=["High", "Medium", "Low"],
|
407 |
+
value="Medium",
|
408 |
+
interactive=True,
|
409 |
+
elem_classes=["compact-input"]
|
410 |
+
)
|
411 |
|
412 |
with gr.Row():
|
413 |
+
detect_btn = gr.Button("🔍 Detect", elem_classes=["primary-btn"], scale=2)
|
414 |
+
sample_logs_btn = gr.Button("📝 Sample", elem_classes=["secondary-btn"], scale=1)
|
415 |
+
|
416 |
+
# Log Input
|
417 |
+
gr.HTML('<div class="result-header">Security Logs Input</div>')
|
418 |
+
log_input = gr.Textbox(
|
419 |
+
placeholder="Paste security logs here...",
|
420 |
+
lines=6,
|
421 |
+
elem_classes=["compact-input", "detection-input"],
|
422 |
+
interactive=True
|
423 |
+
)
|
424 |
+
|
425 |
+
# Detection Results
|
426 |
+
gr.HTML('<div class="result-header">Detection Results</div>')
|
427 |
+
detection_output = gr.Textbox(
|
428 |
+
lines=8,
|
429 |
+
elem_classes=["compact-output"],
|
430 |
+
interactive=False,
|
431 |
+
placeholder="Detection results will appear here..."
|
432 |
+
)
|
433 |
+
|
434 |
+
detection_status = gr.Textbox(
|
435 |
+
label="Status",
|
436 |
+
elem_classes=["status-indicator", "status-success"],
|
437 |
+
interactive=False
|
438 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
439 |
|
440 |
+
# ================== TASK 2: ASSISTANT PANEL ==================
|
441 |
+
with gr.Column(scale=1, elem_classes=["task-panel"]):
|
442 |
+
gr.HTML('<div class="task-header">🤖 TASK 2: ANALYST ASSISTANT</div>')
|
443 |
+
|
444 |
+
# Assistant Controls
|
445 |
+
gr.HTML('<div class="control-label">Analyst Level</div>')
|
446 |
+
analyst_level = gr.Radio(
|
447 |
+
choices=["L1", "L2", "L3"],
|
448 |
+
value="L2",
|
449 |
+
interactive=True,
|
450 |
+
elem_classes=["compact-input"]
|
451 |
+
)
|
452 |
|
453 |
with gr.Row():
|
454 |
+
analyze_btn = gr.Button("🚀 Analyze", elem_classes=["primary-btn"], scale=2)
|
455 |
+
sample_threat_btn = gr.Button("📝 Sample", elem_classes=["secondary-btn"], scale=1)
|
456 |
+
|
457 |
+
# Threat Input
|
458 |
+
gr.HTML('<div class="result-header">Threat Description</div>')
|
459 |
+
threat_input = gr.Textbox(
|
460 |
+
placeholder="Describe the security threat or incident...",
|
461 |
+
lines=6,
|
462 |
+
elem_classes=["compact-input"],
|
463 |
+
interactive=True
|
464 |
+
)
|
465 |
+
|
466 |
+
# Analysis Results
|
467 |
+
gr.HTML('<div class="result-header">AI Analysis & Recommendations</div>')
|
468 |
+
analysis_output = gr.Textbox(
|
469 |
+
lines=8,
|
470 |
+
elem_classes=["compact-output"],
|
471 |
+
interactive=False,
|
472 |
+
placeholder="Analysis results will appear here..."
|
473 |
+
)
|
474 |
+
|
475 |
+
analysis_status = gr.Textbox(
|
476 |
+
label="Status",
|
477 |
+
elem_classes=["status-indicator", "status-success"],
|
478 |
+
interactive=False
|
479 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
480 |
|
481 |
+
# Quick Info Footer
|
482 |
+
gr.HTML("""
|
483 |
+
<div style="text-align: center; padding: 8px; color: rgba(255,255,255,0.8); font-size: 11px;">
|
484 |
+
<strong>Research Project:</strong> LLM-based SOC Assistant • <strong>Student:</strong> Abdullah Alanazi • <strong>Supervisor:</strong> Prof. Ali Shoker • <strong>Institution:</strong> KAUST
|
485 |
+
</div>
|
486 |
""")
|
487 |
|
488 |
+
# ================== EVENT HANDLERS ==================
|
489 |
|
490 |
+
# Detection handlers
|
491 |
detect_btn.click(
|
492 |
+
fn=detect_threats,
|
493 |
+
inputs=[log_input, detect_sensitivity],
|
494 |
outputs=[detection_output, detection_status]
|
495 |
)
|
496 |
|
497 |
+
sample_logs_btn.click(
|
498 |
fn=lambda: SAMPLE_LOGS,
|
499 |
outputs=[log_input]
|
500 |
)
|
501 |
|
502 |
+
# Assistant handlers
|
503 |
analyze_btn.click(
|
504 |
fn=analyze_threat,
|
505 |
inputs=[threat_input, analyst_level],
|
506 |
outputs=[analysis_output, analysis_status]
|
507 |
)
|
508 |
|
509 |
+
sample_threat_btn.click(
|
510 |
fn=lambda: SAMPLE_THREAT,
|
511 |
outputs=[threat_input]
|
512 |
)
|
513 |
|
514 |
+
# System initialization
|
515 |
demo.load(
|
516 |
fn=load_model,
|
517 |
+
outputs=[system_status]
|
518 |
)
|
519 |
|
520 |
if __name__ == "__main__":
|
521 |
+
demo.launch(
|
522 |
+
share=True,
|
523 |
+
server_name="0.0.0.0",
|
524 |
+
server_port=7860
|
525 |
+
)
|