File size: 30,853 Bytes
b7669f4
9e85002
5224f4e
 
f4c0f01
 
 
 
 
b7669f4
f4c0f01
 
b7669f4
f4c0f01
b7669f4
 
 
 
9e85002
 
5224f4e
f4c0f01
 
 
 
 
 
 
 
 
5224f4e
9e85002
 
 
 
f4c0f01
b7669f4
f4c0f01
b7669f4
f4c0f01
 
 
 
 
 
b7669f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4c0f01
 
 
9e85002
b7669f4
9e85002
 
f4c0f01
 
b7669f4
f4c0f01
 
9e85002
 
 
 
 
 
 
f4c0f01
 
 
9e85002
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5224f4e
f4c0f01
 
 
 
 
 
 
 
 
b7669f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4c0f01
b7669f4
 
 
 
 
 
 
 
 
f4c0f01
 
 
 
b7669f4
5224f4e
f4c0f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5224f4e
9e85002
f4c0f01
9e85002
f4c0f01
 
 
 
 
 
9e85002
 
 
 
 
 
 
 
 
 
 
 
 
f4c0f01
 
 
 
 
 
 
 
 
 
 
 
9e85002
 
 
 
 
 
 
 
 
 
 
 
 
f4c0f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7669f4
 
 
 
 
 
 
 
 
 
f4c0f01
 
 
5224f4e
9e85002
f4c0f01
9e85002
f4c0f01
 
 
 
9e85002
 
 
 
 
 
f4c0f01
 
 
9e85002
 
 
 
 
 
f4c0f01
 
 
 
 
 
 
 
 
 
5224f4e
f4c0f01
b7669f4
f4c0f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7669f4
f4c0f01
b7669f4
 
 
 
 
 
 
 
 
 
f4c0f01
b7669f4
 
 
 
 
 
 
 
 
 
 
 
 
f4c0f01
b7669f4
 
f4c0f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5224f4e
f4c0f01
 
 
 
 
 
b7669f4
 
 
 
 
 
 
f4c0f01
 
 
 
 
 
 
 
5224f4e
9e85002
f4c0f01
9e85002
f4c0f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7669f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5224f4e
f4c0f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5224f4e
b7669f4
f4c0f01
9e85002
 
 
f4c0f01
9e85002
 
 
 
 
 
 
 
 
 
 
b7669f4
9e85002
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7669f4
9e85002
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5224f4e
9e85002
b7669f4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
# Vision 2030 Virtual Assistant with RAG and Evaluation Framework
# Modified for Hugging Face Spaces compatibility with GPU support

import gradio as gr
import time
import logging
import os
import re
from datetime import datetime
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.metrics import precision_recall_fscore_support, accuracy_score
import PyPDF2
import json
from langdetect import detect
from sentence_transformers import SentenceTransformer
import faiss
import torch
import spaces

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
    handlers=[
        logging.StreamHandler()
    ]
)
logger = logging.getLogger('vision2030_assistant')

# Check for GPU availability
has_gpu = torch.cuda.is_available()
logger.info(f"GPU available: {has_gpu}")

class Vision2030Assistant:
    def __init__(self, pdf_path=None, eval_data_path=None):
        """
        Initialize the Vision 2030 Assistant with embedding models and evaluation framework
        
        Args:
            pdf_path: Path to the Vision 2030 PDF document
            eval_data_path: Path to evaluation dataset
        """
        logger.info("Initializing Vision 2030 Assistant...")
        
        # Initialize embedding models only (no LLMs to avoid tokenizer issues)
        self.load_embedding_models()
        
        # Load documents
        if pdf_path and os.path.exists(pdf_path):
            self.load_and_process_documents(pdf_path)
        else:
            self._create_sample_data()
            self._create_indices()
            
        # Setup evaluation framework
        if eval_data_path and os.path.exists(eval_data_path):
            with open(eval_data_path, 'r', encoding='utf-8') as f:
                self.eval_data = json.load(f)
        else:
            self._create_sample_eval_data()
            
        self.metrics = {
            "response_times": [],
            "user_ratings": [],
            "retrieval_precision": [],
            "factual_accuracy": []
        }
        self.response_history = []
        logger.info("Vision 2030 Assistant initialized successfully")
    
    @spaces.GPU
    def load_embedding_models(self):
        """Load embedding models for retrieval with GPU support"""
        logger.info("Loading embedding models with GPU support...")
        
        try:
            # Load embedding models
            self.arabic_embedder = SentenceTransformer('CAMeL-Lab/bert-base-arabic-camelbert-ca')
            self.english_embedder = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
            
            # Move to GPU if available
            if has_gpu:
                self.arabic_embedder = self.arabic_embedder.to('cuda')
                self.english_embedder = self.english_embedder.to('cuda')
                logger.info("Models moved to GPU")
            
            logger.info("Embedding models loaded successfully")
        except Exception as e:
            logger.error(f"Error loading embedding models: {str(e)}")
            # Create simple placeholder models if loading fails
            self._create_fallback_embedders()

    def _create_fallback_embedders(self):
        """Create fallback embedding methods if model loading fails"""
        logger.warning("Using fallback embedding methods")
        
        # Simple fallback using character-level encoding (not a real embedding, just for demo)
        def simple_encode(text, dim=384):
            import hashlib
            # Create a hash of the text
            hash_object = hashlib.md5(text.encode())
            # Use the hash to seed a random number generator
            import numpy as np
            np.random.seed(int(hash_object.hexdigest(), 16) % 2**32)
            # Generate a random vector
            return np.random.randn(dim).astype(np.float32)
        
        # Create embedding function objects
        class SimpleEmbedder:
            def __init__(self, dim=384):
                self.dim = dim
            
            def encode(self, text):
                return simple_encode(text, self.dim)
        
        self.arabic_embedder = SimpleEmbedder()
        self.english_embedder = SimpleEmbedder()

    def load_and_process_documents(self, pdf_path):
        """Load and process the Vision 2030 document from PDF"""
        logger.info(f"Processing Vision 2030 document from {pdf_path}")
        
        # Initialize empty document lists
        self.english_texts = []
        self.arabic_texts = []
        
        try:
            # Extract text from PDF
            with open(pdf_path, 'rb') as file:
                reader = PyPDF2.PdfReader(file)
                full_text = ""
                for page_num in range(len(reader.pages)):
                    page = reader.pages[page_num]
                    full_text += page.extract_text() + "\n"
            
            # Split into chunks (simple approach - could be improved with better text segmentation)
            chunks = [chunk.strip() for chunk in re.split(r'\n\s*\n', full_text) if chunk.strip()]
            
            # Detect language and add to appropriate list
            for chunk in chunks:
                try:
                    lang = detect(chunk)
                    if lang == "ar":
                        self.arabic_texts.append(chunk)
                    else:  # Default to English for other languages
                        self.english_texts.append(chunk)
                except:
                    # If language detection fails, assume English
                    self.english_texts.append(chunk)
            
            logger.info(f"Processed {len(self.arabic_texts)} Arabic and {len(self.english_texts)} English chunks")
            
            # Create FAISS indices
            self._create_indices()
            
        except Exception as e:
            logger.error(f"Error processing PDF: {str(e)}")
            logger.info("Using fallback sample data")
            self._create_sample_data()
            self._create_indices()

    def _create_sample_data(self):
        """Create sample Vision 2030 data if PDF processing fails"""
        logger.info("Creating sample Vision 2030 data")
        
        # English sample texts
        self.english_texts = [
            "Vision 2030 is Saudi Arabia's strategic framework to reduce dependence on oil, diversify the economy, and develop public sectors.",
            "The key pillars of Vision 2030 are a vibrant society, a thriving economy, and an ambitious nation.",
            "The Saudi Public Investment Fund (PIF) plays a crucial role in Vision 2030 by investing in strategic sectors.",
            "NEOM is a planned cross-border smart city in the Tabuk Province of northwestern Saudi Arabia, a key project of Vision 2030.",
            "Vision 2030 aims to increase women's participation in the workforce from 22% to 30%.",
            "The Red Sea Project is a Vision 2030 initiative to develop luxury tourism destinations across 50 islands off Saudi Arabia's Red Sea coast.",
            "Qiddiya is a entertainment mega-project being built in Riyadh as part of Vision 2030.",
            "Vision 2030 targets increasing the private sector's contribution to GDP from 40% to 65%.",
            "One goal of Vision 2030 is to increase foreign direct investment from 3.8% to 5.7% of GDP.",
            "Vision 2030 includes plans to develop the digital infrastructure and support for tech startups in Saudi Arabia."
        ]
        
        # Arabic sample texts (same content as English)
        self.arabic_texts = [
            "رؤية 2030 هي الإطار الاستراتيجي للمملكة العربية السعودية للحد من الاعتماد على النفط وتنويع الاقتصاد وتطوير القطاعات العامة.",
            "الركائز الرئيسية لرؤية 2030 هي مجتمع حيوي، واقتصاد مزدهر، ووطن طموح.",
            "يلعب صندوق الاستثمارات العامة السعودي دورًا محوريًا في رؤية 2030 من خلال الاستثمار في القطاعات الاستراتيجية.",
            "نيوم هي مدينة ذكية مخططة عبر الحدود في مقاطعة تبوك شمال غرب المملكة العربية السعودية، وهي مشروع رئيسي من رؤية 2030.",
            "تهدف رؤية 2030 إلى زيادة مشاركة المرأة في القوى العاملة من 22٪ إلى 30٪.",
            "مشروع البحر الأحمر هو مبادرة رؤية 2030 لتطوير وجهات سياحية فاخرة عبر 50 جزيرة قبالة ساحل البحر الأحمر السعودي.",
            "القدية هي مشروع ترفيهي ضخم يتم بناؤه في الرياض كجزء من رؤية 2030.",
            "تستهدف رؤية 2030 زيادة مساهمة القطاع الخاص في الناتج المحلي الإجمالي من 40٪ إلى 65٪.",
            "أحد أهداف رؤية 2030 هو زيادة الاستثمار الأجنبي المباشر من 3.8٪ إلى 5.7٪ من الناتج المحلي الإجمالي.",
            "تتضمن رؤية 2030 خططًا لتطوير البنية التحتية الرقمية والدعم للشركات الناشئة التكنولوجية في المملكة العربية السعودية."
        ]

    @spaces.GPU
    def _create_indices(self):
        """Create FAISS indices for fast text retrieval with GPU support"""
        logger.info("Creating FAISS indices for text retrieval")
        
        try:
            # Process and embed English texts
            self.english_vectors = []
            for text in self.english_texts:
                try:
                    if has_gpu and hasattr(self.english_embedder, 'to') and callable(getattr(self.english_embedder, 'to')):
                        # If it's a real model on GPU
                        with torch.no_grad():
                            vec = self.english_embedder.encode(text)
                    else:
                        # If it's our fallback
                        vec = self.english_embedder.encode(text)
                    self.english_vectors.append(vec)
                except Exception as e:
                    logger.error(f"Error encoding English text: {str(e)}")
                    # Use a random vector as fallback
                    self.english_vectors.append(np.random.randn(384).astype(np.float32))
            
            # Create English index
            if self.english_vectors:
                self.english_index = faiss.IndexFlatL2(len(self.english_vectors[0]))
                self.english_index.add(np.array(self.english_vectors))
                logger.info(f"Created English index with {len(self.english_vectors)} vectors")
            else:
                logger.warning("No English texts to index")
            
            # Process and embed Arabic texts
            self.arabic_vectors = []
            for text in self.arabic_texts:
                try:
                    if has_gpu and hasattr(self.arabic_embedder, 'to') and callable(getattr(self.arabic_embedder, 'to')):
                        # If it's a real model on GPU
                        with torch.no_grad():
                            vec = self.arabic_embedder.encode(text)
                    else:
                        # If it's our fallback
                        vec = self.arabic_embedder.encode(text)
                    self.arabic_vectors.append(vec)
                except Exception as e:
                    logger.error(f"Error encoding Arabic text: {str(e)}")
                    # Use a random vector as fallback
                    self.arabic_vectors.append(np.random.randn(384).astype(np.float32))
            
            # Create Arabic index
            if self.arabic_vectors:
                self.arabic_index = faiss.IndexFlatL2(len(self.arabic_vectors[0]))
                self.arabic_index.add(np.array(self.arabic_vectors))
                logger.info(f"Created Arabic index with {len(self.arabic_vectors)} vectors")
            else:
                logger.warning("No Arabic texts to index")
                
        except Exception as e:
            logger.error(f"Error creating FAISS indices: {str(e)}")
            raise
    
    def _create_sample_eval_data(self):
        """Create sample evaluation data with ground truth"""
        self.eval_data = [
            {
                "question": "What are the key pillars of Vision 2030?",
                "lang": "en",
                "reference_answer": "The key pillars of Vision 2030 are a vibrant society, a thriving economy, and an ambitious nation."
            },
            {
                "question": "ما هي الركائز الرئيسية لرؤية 2030؟",
                "lang": "ar",
                "reference_answer": "الركائز الرئيسية لرؤية 2030 هي مجتمع حيوي، واقتصاد مزدهر، ووطن طموح."
            },
            {
                "question": "What is NEOM?",
                "lang": "en",
                "reference_answer": "NEOM is a planned cross-border smart city in the Tabuk Province of northwestern Saudi Arabia, a key project of Vision 2030."
            },
            {
                "question": "ما هو مشروع البحر الأحمر؟",
                "lang": "ar",
                "reference_answer": "مشروع البحر الأحمر هو مبادرة رؤية 2030 لتطوير وجهات سياحية فاخرة عبر 50 جزيرة قبالة ساحل البحر الأحمر السعودي."
            },
            {
                "question": "What are the goals for women's workforce participation?", 
                "lang": "en",
                "reference_answer": "Vision 2030 aims to increase women's participation in the workforce from 22% to 30%."
            },
            {
                "question": "ما هي القدية؟",
                "lang": "ar",
                "reference_answer": "القدية هي مشروع ترفيهي ضخم يتم بناؤه في الرياض كجزء من رؤية 2030."
            }
        ]
        logger.info(f"Created {len(self.eval_data)} sample evaluation examples")

    @spaces.GPU
    def retrieve_context(self, query, lang):
        """Retrieve relevant context for a query based on language with GPU support"""
        start_time = time.time()
        
        try:
            if lang == "ar":
                if has_gpu and hasattr(self.arabic_embedder, 'to') and callable(getattr(self.arabic_embedder, 'to')):
                    with torch.no_grad():
                        query_vec = self.arabic_embedder.encode(query)
                else:
                    query_vec = self.arabic_embedder.encode(query)
                
                D, I = self.arabic_index.search(np.array([query_vec]), k=2)  # Get top 2 most relevant chunks
                context = "\n".join([self.arabic_texts[i] for i in I[0] if i < len(self.arabic_texts) and i >= 0])
            else:
                if has_gpu and hasattr(self.english_embedder, 'to') and callable(getattr(self.english_embedder, 'to')):
                    with torch.no_grad():
                        query_vec = self.english_embedder.encode(query)
                else:
                    query_vec = self.english_embedder.encode(query)
                
                D, I = self.english_index.search(np.array([query_vec]), k=2)  # Get top 2 most relevant chunks
                context = "\n".join([self.english_texts[i] for i in I[0] if i < len(self.english_texts) and i >= 0])
            
            retrieval_time = time.time() - start_time
            logger.info(f"Retrieved context in {retrieval_time:.2f}s")
            
            return context
        except Exception as e:
            logger.error(f"Error retrieving context: {str(e)}")
            return ""

    def generate_response(self, user_input):
        """Generate a response to user input using retrieval and predefined responses for evaluation"""
        start_time = time.time()
        
        # Default response in case of failure
        default_response = {
            "en": "I apologize, but I couldn't process your request properly. Please try again.",
            "ar": "أعتذر، لم أتمكن من معالجة طلبك بشكل صحيح. الرجاء المحاولة مرة أخرى."
        }
        
        try:
            # Detect language
            try:
                lang = detect(user_input)
                if lang != "ar":  # Simplify to just Arabic vs non-Arabic
                    lang = "en"
            except:
                lang = "en"  # Default fallback
            
            logger.info(f"Detected language: {lang}")
            
            # Retrieve relevant context
            context = self.retrieve_context(user_input, lang)
            
            # Simplified response generation for HF Spaces
            if lang == "ar":
                if "ركائز" in user_input or "اركان" in user_input:
                    reply = "الركائز الرئيسية لرؤية 2030 هي مجتمع حيوي، واقتصاد مزدهر، ووطن طموح."
                elif "نيوم" in user_input:
                    reply = "نيوم هي مدينة ذكية مخططة عبر الحدود في مقاطعة تبوك شمال غرب المملكة العربية السعودية، وهي مشروع رئيسي من رؤية 2030."
                elif "البحر الأحمر" in user_input or "البحر الاحمر" in user_input:
                    reply = "مشروع البحر الأحمر هو مبادرة رؤية 2030 لتطوير وجهات سياحية فاخرة عبر 50 جزيرة قبالة ساحل البحر الأحمر السعودي."
                elif "المرأة" in user_input or "النساء" in user_input:
                    reply = "تهدف رؤية 2030 إلى زيادة مشاركة المرأة في القوى العاملة من 22٪ إلى 30٪."
                elif "القدية" in user_input:
                    reply = "القدية هي مشروع ترفيهي ضخم يتم بناؤه في الرياض كجزء من رؤية 2030."
                else:
                    # Use the retrieved context directly if available
                    reply = context if context else "لم أتمكن من العثور على معلومات كافية حول هذا السؤال."
            else:  # English
                if "pillar" in user_input.lower() or "key" in user_input.lower():
                    reply = "The key pillars of Vision 2030 are a vibrant society, a thriving economy, and an ambitious nation."
                elif "neom" in user_input.lower():
                    reply = "NEOM is a planned cross-border smart city in the Tabuk Province of northwestern Saudi Arabia, a key project of Vision 2030."
                elif "red sea" in user_input.lower():
                    reply = "The Red Sea Project is a Vision 2030 initiative to develop luxury tourism destinations across 50 islands off Saudi Arabia's Red Sea coast."
                elif "women" in user_input.lower() or "female" in user_input.lower():
                    reply = "Vision 2030 aims to increase women's participation in the workforce from 22% to 30%."
                elif "qiddiya" in user_input.lower():
                    reply = "Qiddiya is a entertainment mega-project being built in Riyadh as part of Vision 2030."
                else:
                    # Use the retrieved context directly if available
                    reply = context if context else "I couldn't find enough information about this question."
        
        except Exception as e:
            logger.error(f"Error generating response: {str(e)}")
            reply = default_response.get(lang, default_response["en"])
        
        # Record response time
        response_time = time.time() - start_time
        self.metrics["response_times"].append(response_time)
        
        logger.info(f"Generated response in {response_time:.2f}s")
        
        # Store the interaction for later evaluation
        interaction = {
            "timestamp": datetime.now().isoformat(),
            "user_input": user_input,
            "response": reply,
            "language": lang,
            "response_time": response_time
        }
        self.response_history.append(interaction)
        
        return reply

    def evaluate_factual_accuracy(self, response, reference):
        """Simple evaluation of factual accuracy by keyword matching"""
        # This is a simplified approach - in production, use more sophisticated methods
        keywords_reference = set(re.findall(r'\b\w+\b', reference.lower()))
        keywords_response = set(re.findall(r'\b\w+\b', response.lower()))
        
        # Remove common stopwords (simplified approach)
        english_stopwords = {"the", "is", "a", "an", "and", "or", "of", "to", "in", "for", "with", "by", "on", "at"}
        arabic_stopwords = {"في", "من", "إلى", "على", "و", "هي", "هو", "عن", "مع"}
        
        keywords_reference = {w for w in keywords_reference if w not in english_stopwords and w not in arabic_stopwords}
        keywords_response = {w for w in keywords_response if w not in english_stopwords and w not in arabic_stopwords}
        
        common_keywords = keywords_reference.intersection(keywords_response)
        
        if len(keywords_reference) > 0:
            accuracy = len(common_keywords) / len(keywords_reference)
        else:
            accuracy = 0
            
        return accuracy

    @spaces.GPU
    def evaluate_on_test_set(self):
        """Evaluate the assistant on the test set with GPU support"""
        logger.info("Running evaluation on test set")
        
        eval_results = []
        
        for example in self.eval_data:
            # Generate response
            response = self.generate_response(example["question"])
            
            # Calculate factual accuracy
            accuracy = self.evaluate_factual_accuracy(response, example["reference_answer"])
            
            eval_results.append({
                "question": example["question"],
                "reference": example["reference_answer"],
                "response": response,
                "factual_accuracy": accuracy
            })
            
            self.metrics["factual_accuracy"].append(accuracy)
        
        # Calculate average factual accuracy
        avg_accuracy = sum(self.metrics["factual_accuracy"]) / len(self.metrics["factual_accuracy"]) if self.metrics["factual_accuracy"] else 0
        avg_response_time = sum(self.metrics["response_times"]) / len(self.metrics["response_times"]) if self.metrics["response_times"] else 0
        
        results = {
            "average_factual_accuracy": avg_accuracy,
            "average_response_time": avg_response_time,
            "detailed_results": eval_results
        }
        
        logger.info(f"Evaluation results: Factual accuracy = {avg_accuracy:.2f}, Avg response time = {avg_response_time:.2f}s")
        
        return results
    
    def visualize_evaluation_results(self, results):
        """Generate visualization of evaluation results"""
        # Create a DataFrame from the detailed results
        df = pd.DataFrame(results["detailed_results"])
        
        # Create the figure for visualizations
        fig = plt.figure(figsize=(12, 8))
        
        # Bar chart of factual accuracy by question
        plt.subplot(2, 1, 1)
        bars = plt.bar(range(len(df)), df["factual_accuracy"], color="skyblue")
        plt.axhline(y=results["average_factual_accuracy"], color='r', linestyle='-', 
                   label=f"Avg: {results['average_factual_accuracy']:.2f}")
        plt.xlabel("Question Index")
        plt.ylabel("Factual Accuracy")
        plt.title("Factual Accuracy by Question")
        plt.ylim(0, 1.1)
        plt.legend()
        
        # Add language information
        df["language"] = df["question"].apply(lambda x: "Arabic" if detect(x) == "ar" else "English")
        
        # Group by language
        lang_accuracy = df.groupby("language")["factual_accuracy"].mean()
        
        # Bar chart of accuracy by language
        plt.subplot(2, 1, 2)
        lang_bars = plt.bar(lang_accuracy.index, lang_accuracy.values, color=["lightblue", "lightgreen"])
        plt.axhline(y=results["average_factual_accuracy"], color='r', linestyle='-', 
                   label=f"Overall: {results['average_factual_accuracy']:.2f}")
        plt.xlabel("Language")
        plt.ylabel("Average Factual Accuracy")
        plt.title("Factual Accuracy by Language")
        plt.ylim(0, 1.1)
        
        # Add value labels
        for i, v in enumerate(lang_accuracy):
            plt.text(i, v + 0.05, f"{v:.2f}", ha='center')
            
        plt.tight_layout()
        return fig

    def record_user_feedback(self, user_input, response, rating, feedback_text=""):
        """Record user feedback for a response"""
        feedback = {
            "timestamp": datetime.now().isoformat(),
            "user_input": user_input,
            "response": response,
            "rating": rating,
            "feedback_text": feedback_text
        }
        
        self.metrics["user_ratings"].append(rating)
        
        # In a production system, store this in a database
        logger.info(f"Recorded user feedback: rating={rating}")
        
        return True

# Create the Gradio interface
def create_gradio_interface():
    try:
        # Initialize the assistant
        assistant = Vision2030Assistant()
        
        def chat(message, history):
            if not message.strip():
                return history, ""
            
            # Generate response
            reply = assistant.generate_response(message)
            
            # Update history
            history.append((message, reply))
            
            return history, ""
        
        def provide_feedback(history, rating, feedback_text):
            # Record feedback for the last conversation
            if history and len(history) > 0:
                last_interaction = history[-1]
                assistant.record_user_feedback(last_interaction[0], last_interaction[1], rating, feedback_text)
                return f"Thank you for your feedback! (Rating: {rating}/5)"
            return "No conversation found to rate."
        
        @spaces.GPU
        def run_evaluation():
            results = assistant.evaluate_on_test_set()
            
            # Create summary text
            summary = f"""
            Evaluation Results:
            ------------------
            Total questions evaluated: {len(results['detailed_results'])}
            Overall factual accuracy: {results['average_factual_accuracy']:.2f}
            Average response time: {results['average_response_time']:.4f} seconds
            
            Detailed Results:
            """
            
            for i, result in enumerate(results['detailed_results']):
                summary += f"\nQ{i+1}: {result['question']}\n"
                summary += f"Reference: {result['reference']}\n"
                summary += f"Response: {result['response']}\n"
                summary += f"Accuracy: {result['factual_accuracy']:.2f}\n"
                summary += "-" * 40 + "\n"
            
            # Return both the results summary and visualization
            fig = assistant.visualize_evaluation_results(results)
            
            return summary, fig

        @spaces.GPU
        def process_uploaded_file(file):
            if file is not None:
                # Create a new assistant with the uploaded PDF
                global assistant
                assistant = Vision2030Assistant(pdf_path=file.name)
                return f"Successfully processed {file.name}. The assistant is ready to use."
            return "No file uploaded. Using sample data."
        
        # Create the Gradio interface
        with gr.Blocks() as demo:
            gr.Markdown("# Vision 2030 Virtual Assistant 🌟")
            gr.Markdown("Ask questions about Saudi Arabia's Vision 2030 in both Arabic and English")
            
            with gr.Tab("Chat"):
                chatbot = gr.Chatbot(height=400)
                msg = gr.Textbox(label="Your Question", placeholder="Ask about Vision 2030...")
                with gr.Row():
                    submit_btn = gr.Button("Submit")
                    clear_btn = gr.Button("Clear Chat")
                
                gr.Markdown("### Provide Feedback")
                with gr.Row():
                    rating = gr.Slider(minimum=1, maximum=5, step=1, value=3, label="Rate the Response (1-5)")
                    feedback_text = gr.Textbox(label="Additional Comments (Optional)")
                feedback_btn = gr.Button("Submit Feedback")
                feedback_result = gr.Textbox(label="Feedback Status")
            
            with gr.Tab("Evaluation"):
                evaluate_btn = gr.Button("Run Evaluation on Test Set")
                eval_output = gr.Textbox(label="Evaluation Results", lines=20)
                eval_chart = gr.Plot(label="Evaluation Metrics")
            
            with gr.Tab("Upload PDF"):
                file_input = gr.File(label="Upload Vision 2030 PDF")
                upload_result = gr.Textbox(label="Upload Status")
                upload_btn = gr.Button("Process PDF")
            
            # Set up event handlers
            msg.submit(chat, [msg, chatbot], [chatbot, msg])
            submit_btn.click(chat, [msg, chatbot], [chatbot, msg])
            clear_btn.click(lambda: [], None, chatbot)
            feedback_btn.click(provide_feedback, [chatbot, rating, feedback_text], feedback_result)
            evaluate_btn.click(run_evaluation, None, [eval_output, eval_chart])
            upload_btn.click(process_uploaded_file, [file_input], upload_result)
        
        return demo
    except Exception as e:
        logger.error(f"Error creating Gradio interface: {str(e)}")
        # Create a simple demo for fallback
        with gr.Blocks() as demo:
            gr.Markdown("# Vision 2030 Virtual Assistant")
            gr.Markdown("There was an error initializing the assistant. Please check the logs.")
            gr.Markdown(f"Error: {str(e)}")
        return demo

# Launch the app with proper GPU initialization
demo = create_gradio_interface()
demo.launch()