File size: 18,761 Bytes
f4c0f01 1f683db 72544b8 1f683db a8285e4 1f683db a8285e4 1f683db a8285e4 1f683db a8285e4 1f683db a8285e4 1f683db a8285e4 1f683db a8285e4 1f683db a8285e4 1f683db a8285e4 1f683db a8285e4 1f683db a8285e4 1f683db a8285e4 1f683db a8285e4 1f683db a8285e4 1f683db a8285e4 1f683db a8285e4 1f683db a8285e4 1f683db a8285e4 1f683db a8285e4 1f683db a8285e4 1f683db a8285e4 1f683db a8285e4 1f683db a8285e4 1f683db a8285e4 1f683db a8285e4 1f683db a8285e4 1f683db a8285e4 1f683db a8285e4 1f683db a8285e4 1f683db a8285e4 1f683db a8285e4 1f683db a8285e4 1f683db a8285e4 1f683db a8285e4 1f683db a8285e4 1f683db a8285e4 732ba20 a8285e4 732ba20 a8285e4 1f683db a8285e4 5224f4e 8f83e1c 1f683db a8285e4 1f683db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 |
import os
import re
import json
from tqdm import tqdm
from pathlib import Path
import spaces
import gradio as gr
# WARNING: Don't import torch, cuda, or GPU-related modules at the top level
# They must ONLY be imported inside functions decorated with @spaces.GPU
# Helper functions that don't use GPU
def safe_tokenize(text):
"""Pure regex tokenizer with no NLTK dependency"""
if not text:
return []
# Replace punctuation with spaces around them
text = re.sub(r'([.,!?;:()\[\]{}"\'/\\])', r' \1 ', text)
# Split on whitespace and filter empty strings
return [token for token in re.split(r'\s+', text.lower()) if token]
def detect_language(text):
"""Detect if text is primarily Arabic or English"""
# Simple heuristic: count Arabic characters
arabic_chars = re.findall(r'[\u0600-\u06FF]', text)
is_arabic = len(arabic_chars) > len(text) * 0.5
return "arabic" if is_arabic else "english"
# Comprehensive evaluation dataset
comprehensive_evaluation_data = [
# === Overview ===
{
"query": "ما هي رؤية السعودية 2030؟",
"reference": "رؤية السعودية 2030 هي خطة استراتيجية تهدف إلى تنويع الاقتصاد السعودي وتقليل الاعتماد على النفط مع تطوير قطاعات مختلفة مثل الصحة والتعليم والسياحة.",
"category": "overview",
"language": "arabic"
},
{
"query": "What is Saudi Vision 2030?",
"reference": "Saudi Vision 2030 is a strategic framework aiming to diversify Saudi Arabia's economy and reduce dependence on oil, while developing sectors like health, education, and tourism.",
"category": "overview",
"language": "english"
},
# === Economic Goals ===
{
"query": "ما هي الأهداف الاقتصادية لرؤية 2030؟",
"reference": "تشمل الأهداف الاقتصادية زيادة مساهمة القطاع الخاص إلى 65%، وزيادة الصادرات غير النفطية إلى 50% من الناتج المحلي غير النفطي، وخفض البطالة إلى 7%.",
"category": "economic",
"language": "arabic"
},
{
"query": "What are the economic goals of Vision 2030?",
"reference": "The economic goals of Vision 2030 include increasing private sector contribution from 40% to 65% of GDP, raising non-oil exports from 16% to 50%, reducing unemployment from 11.6% to 7%.",
"category": "economic",
"language": "english"
},
# === Social Goals ===
{
"query": "كيف تعزز رؤية 2030 الإرث الثقافي السعودي؟",
"reference": "تتضمن رؤية 2030 الحفاظ على الهوية الوطنية، تسجيل مواقع أثرية في اليونسكو، وتعزيز الفعاليات الثقافية.",
"category": "social",
"language": "arabic"
},
{
"query": "How does Vision 2030 aim to improve quality of life?",
"reference": "Vision 2030 plans to enhance quality of life by expanding sports facilities, promoting cultural activities, and boosting tourism and entertainment sectors.",
"category": "social",
"language": "english"
}
]
# RAG Service class
class Vision2030Service:
def __init__(self):
self.initialized = False
self.model = None
self.tokenizer = None
self.vector_store = None
self.conversation_history = []
@spaces.GPU
def initialize(self):
"""Initialize the system - ALL GPU operations must happen here"""
if self.initialized:
return True
try:
# Import all GPU-dependent libraries only inside this function
import torch
import PyPDF2
from transformers import AutoTokenizer, AutoModelForCausalLM
from sentence_transformers import SentenceTransformer
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import FAISS
from langchain.schema import Document
from langchain.embeddings import HuggingFaceEmbeddings
# Define paths for PDF files
pdf_files = ["saudi_vision203.pdf", "saudi_vision2030_ar.pdf"]
# Process PDFs and create vector store
vector_store_dir = "vector_stores"
os.makedirs(vector_store_dir, exist_ok=True)
if os.path.exists(os.path.join(vector_store_dir, "index.faiss")):
print("Loading existing vector store...")
embedding_function = HuggingFaceEmbeddings(
model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
)
self.vector_store = FAISS.load_local(vector_store_dir, embedding_function)
else:
print("Creating new vector store...")
# Process PDFs
documents = []
for pdf_path in pdf_files:
if not os.path.exists(pdf_path):
print(f"Warning: {pdf_path} does not exist")
continue
print(f"Processing {pdf_path}...")
text = ""
with open(pdf_path, 'rb') as file:
reader = PyPDF2.PdfReader(file)
for page in reader.pages:
page_text = page.extract_text()
if page_text:
text += page_text + "\n\n"
if text.strip():
doc = Document(
page_content=text,
metadata={"source": pdf_path, "filename": os.path.basename(pdf_path)}
)
documents.append(doc)
if not documents:
raise ValueError("No documents were processed successfully.")
# Split into chunks
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=500,
chunk_overlap=50,
separators=["\n\n", "\n", ".", "!", "?", ",", " ", ""]
)
chunks = []
for doc in documents:
doc_chunks = text_splitter.split_text(doc.page_content)
chunks.extend([
Document(page_content=chunk, metadata=doc.metadata)
for chunk in doc_chunks
])
# Create vector store
embedding_function = HuggingFaceEmbeddings(
model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
)
self.vector_store = FAISS.from_documents(chunks, embedding_function)
self.vector_store.save_local(vector_store_dir)
# Load model
model_name = "ALLaM-AI/ALLaM-7B-Instruct-preview"
self.tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=True,
use_fast=False
)
self.model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
device_map="auto",
)
self.initialized = True
return True
except Exception as e:
import traceback
print(f"Initialization error: {e}")
print(traceback.format_exc())
return False
@spaces.GPU
def retrieve_context(self, query, top_k=5):
"""Retrieve contexts from vector store"""
# Import must be inside the function to avoid CUDA init in main process
if not self.initialized:
return []
try:
results = self.vector_store.similarity_search_with_score(query, k=top_k)
contexts = []
for doc, score in results:
contexts.append({
"content": doc.page_content,
"source": doc.metadata.get("source", "Unknown"),
"relevance_score": score
})
return contexts
except Exception as e:
print(f"Error retrieving context: {e}")
return []
@spaces.GPU
def generate_response(self, query, contexts, language="auto"):
"""Generate response using the model"""
# Import must be inside the function to avoid CUDA init in main process
import torch
if not self.initialized or self.model is None or self.tokenizer is None:
return "I'm still initializing. Please try again in a moment."
try:
# Auto-detect language if not specified
if language == "auto":
language = detect_language(query)
# Format the prompt based on language
if language == "arabic":
instruction = (
"أنت مساعد افتراضي يهتم برؤية السعودية 2030. استخدم المعلومات التالية للإجابة على السؤال. "
"إذا لم تعرف الإجابة، فقل بأمانة إنك لا تعرف."
)
else: # english
instruction = (
"You are a virtual assistant for Saudi Vision 2030. Use the following information to answer the question. "
"If you don't know the answer, honestly say you don't know."
)
# Combine retrieved contexts
context_text = "\n\n".join([f"Document: {ctx['content']}" for ctx in contexts])
# Format the prompt for ALLaM instruction format
prompt = f"""<s>[INST] {instruction}
Context:
{context_text}
Question: {query} [/INST]</s>"""
# Generate response
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
outputs = self.model.generate(
inputs.input_ids,
attention_mask=inputs.attention_mask,
max_new_tokens=512,
temperature=0.7,
top_p=0.9,
do_sample=True,
repetition_penalty=1.1
)
# Decode the response
full_output = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract just the answer part (after the instruction)
response = full_output.split("[/INST]")[-1].strip()
# If response is empty for some reason, return the full output
if not response:
response = full_output
return response
except Exception as e:
import traceback
print(f"Error generating response: {e}")
print(traceback.format_exc())
return f"Sorry, I encountered an error while generating a response."
@spaces.GPU
def answer_question(self, query):
"""Process a user query and return a response with sources"""
if not self.initialized:
if not self.initialize():
return "System initialization failed. Please check the logs.", []
try:
# Add user query to conversation history
self.conversation_history.append({"role": "user", "content": query})
# Get the full conversation context
conversation_context = "\n".join([
f"{'User' if msg['role'] == 'user' else 'Assistant'}: {msg['content']}"
for msg in self.conversation_history[-6:] # Keep last 3 turns
])
# Enhance query with conversation context
enhanced_query = f"{conversation_context}\n{query}"
# Retrieve relevant contexts
contexts = self.retrieve_context(enhanced_query, top_k=5)
# Generate response
response = self.generate_response(query, contexts)
# Add response to conversation history
self.conversation_history.append({"role": "assistant", "content": response})
# Get sources
sources = [ctx.get("source", "Unknown") for ctx in contexts]
unique_sources = list(set(sources))
return response, unique_sources
except Exception as e:
import traceback
print(f"Error answering question: {e}")
print(traceback.format_exc())
return f"Sorry, I encountered an error: {str(e)}", []
def reset_conversation(self):
"""Reset the conversation history"""
self.conversation_history = []
return "Conversation has been reset."
# Main function with Gradio UI
def main():
# Create the Vision 2030 service
service = Vision2030Service()
# Build the Gradio interface
with gr.Blocks(title="Vision 2030 Assistant") as demo:
gr.Markdown("# Vision 2030 Assistant")
gr.Markdown("Ask questions about Saudi Vision 2030 in English or Arabic")
with gr.Tab("Chat"):
chatbot = gr.Chatbot()
msg = gr.Textbox(label="Your question", placeholder="Ask about Vision 2030...")
clear = gr.Button("Clear History")
@spaces.GPU
def respond(message, history):
if not message:
return history, ""
response, sources = service.answer_question(message)
sources_text = ", ".join(sources) if sources else "No specific sources"
# Format the response to include sources
full_response = f"{response}\n\nSources: {sources_text}"
return history + [[message, full_response]], ""
def reset_chat():
service.reset_conversation()
return [], "Conversation history has been reset."
msg.submit(respond, [msg, chatbot], [chatbot, msg])
clear.click(reset_chat, None, [chatbot, msg])
with gr.Tab("System Status"):
init_btn = gr.Button("Initialize System")
status_box = gr.Textbox(label="Status", value="System not initialized")
@spaces.GPU
def initialize_system():
success = service.initialize()
if success:
return "System initialized successfully!"
else:
return "System initialization failed. Check logs for details."
init_btn.click(initialize_system, None, status_box)
# PDF Check section
gr.Markdown("### PDF Status")
pdf_btn = gr.Button("Check PDF Files")
pdf_status = gr.Textbox(label="PDF Files")
def check_pdfs():
result = []
for pdf_file in ["saudi_vision203.pdf", "saudi_vision2030_ar.pdf"]:
if os.path.exists(pdf_file):
size = os.path.getsize(pdf_file) / (1024 * 1024) # Size in MB
result.append(f"{pdf_file}: Found ({size:.2f} MB)")
else:
result.append(f"{pdf_file}: Not found")
return "\n".join(result)
pdf_btn.click(check_pdfs, None, pdf_status)
# System check section
gr.Markdown("### Dependencies")
sys_btn = gr.Button("Check Dependencies")
sys_status = gr.Textbox(label="Dependencies Status")
@spaces.GPU
def check_dependencies():
result = []
# Safe imports inside GPU-decorated function
try:
import torch
result.append(f"✓ PyTorch: {torch.__version__}")
except ImportError:
result.append("✗ PyTorch: Not installed")
try:
import transformers
result.append(f"✓ Transformers: {transformers.__version__}")
except ImportError:
result.append("✗ Transformers: Not installed")
try:
import sentencepiece
result.append("✓ SentencePiece: Installed")
except ImportError:
result.append("✗ SentencePiece: Not installed")
try:
import accelerate
result.append(f"✓ Accelerate: {accelerate.__version__}")
except ImportError:
result.append("✗ Accelerate: Not installed")
try:
import langchain
result.append(f"✓ LangChain: {langchain.__version__}")
except ImportError:
result.append("✗ LangChain: Not installed")
try:
import langchain_community
result.append(f"✓ LangChain Community: {langchain_community.__version__}")
except ImportError:
result.append("✗ LangChain Community: Not installed")
return "\n".join(result)
sys_btn.click(check_dependencies, None, sys_status)
with gr.Tab("Sample Questions"):
gr.Markdown("### Sample Questions to Try")
sample_questions = []
for item in comprehensive_evaluation_data:
sample_questions.append(item["query"])
questions_md = "\n".join([f"- {q}" for q in sample_questions])
gr.Markdown(questions_md)
return demo
if __name__ == "__main__":
demo = main()
demo.queue()
demo.launch() |