File size: 12,381 Bytes
5224f4e f4c0f01 b7669f4 f4c0f01 ae5e187 b7669f4 9e85002 ae5e187 5224f4e ae5e187 f4c0f01 ae5e187 6116543 f4c0f01 ae5e187 5224f4e 6116543 9e85002 f4c0f01 39d753a ae5e187 f4c0f01 b7669f4 ae5e187 b7669f4 ae5e187 b7669f4 ae5e187 1a7b773 39d753a ae5e187 39d753a ae5e187 f63c425 ae5e187 1a7b773 f63c425 ae5e187 9e85002 b7669f4 ae5e187 f4c0f01 9e85002 f4c0f01 ae5e187 9e85002 ae5e187 9e85002 ae5e187 9e85002 ae5e187 9e85002 5224f4e ae5e187 1a7b773 ae5e187 1a7b773 ae5e187 1a7b773 ae5e187 1a7b773 ae5e187 1a7b773 5224f4e 9e85002 f4c0f01 ae5e187 f4c0f01 ae5e187 f4c0f01 ae5e187 f4c0f01 ae5e187 f4c0f01 ae5e187 f4c0f01 5224f4e 9e85002 ae5e187 f4c0f01 ae5e187 f4c0f01 ae5e187 5224f4e ae5e187 f4c0f01 ae5e187 f4c0f01 ae5e187 f4c0f01 ae5e187 f63c425 f4c0f01 ae5e187 5224f4e 1a7b773 ae5e187 d30267d 1a7b773 ae5e187 1a7b773 cf43777 ae5e187 1a7b773 ae5e187 39d753a 6116543 ae5e187 6116543 ae5e187 39d753a 6116543 5224f4e 39d753a b7669f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
import gradio as gr
import time
import logging
import os
import re
from datetime import datetime
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sentence_transformers import SentenceTransformer, util
import faiss
import torch
import spaces
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import PyPDF2
import io
# Configure logging for debugging and monitoring
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[logging.StreamHandler()]
)
logger = logging.getLogger('Vision2030Assistant')
# Check for GPU availability
has_gpu = torch.cuda.is_available()
logger.info(f"GPU available: {has_gpu}")
class Vision2030Assistant:
def __init__(self):
"""Initialize the assistant with enhanced features"""
logger.info("Initializing Vision 2030 Assistant...")
# Load models with error handling
self.load_embedding_models()
self.load_language_model()
# Initialize knowledge base and indices
self._create_knowledge_base()
self._create_indices()
# Sample evaluation data
self._create_sample_eval_data()
# Metrics storage
self.metrics = {"response_times": [], "user_ratings": [], "factual_accuracy": []}
# Session management
self.session_history = {}
# PDF content flag
self.has_pdf_content = False
logger.info("Assistant initialized successfully")
@spaces.GPU
def load_embedding_models(self):
"""Load embedding models with fallback"""
try:
self.arabic_embedder = SentenceTransformer('CAMeL-Lab/bert-base-arabic-camelbert-ca')
self.english_embedder = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
if has_gpu:
self.arabic_embedder = self.arabic_embedder.to('cuda')
self.english_embedder = self.english_embedder.to('cuda')
logger.info("Embedding models loaded successfully")
except Exception as e:
logger.error(f"Failed to load embedding models: {e}")
self._fallback_embedding()
def _fallback_embedding(self):
"""Fallback to simple embedding if model loading fails"""
logger.warning("Using fallback embedding method")
def simple_embed(text):
import hashlib
hash_obj = hashlib.md5(text.encode())
np.random.seed(int(hash_obj.hexdigest(), 16) % 2**32)
return np.random.randn(384).astype(np.float32)
class SimpleEmbedder:
def encode(self, text):
return simple_embed(text)
self.arabic_embedder = SimpleEmbedder()
self.english_embedder = SimpleEmbedder()
@spaces.GPU
def load_language_model(self):
"""Load language model for advanced response generation"""
try:
self.tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
self.model = AutoModelForCausalLM.from_pretrained("distilgpt2")
if has_gpu:
self.model = self.model.to('cuda')
self.generator = pipeline('text-generation', model=self.model, tokenizer=self.tokenizer, device=0 if has_gpu else -1)
logger.info("Language model loaded successfully")
except Exception as e:
logger.error(f"Failed to load language model: {e}")
self.generator = None
def _create_knowledge_base(self):
"""Create initial knowledge base"""
self.english_texts = [
"Vision 2030 is Saudi Arabia's strategic framework to reduce dependence on oil, diversify the economy, and develop public sectors.",
"The key pillars of Vision 2030 are a vibrant society, a thriving economy, and an ambitious nation.",
"NEOM is a planned smart city in Tabuk Province, a key Vision 2030 project."
]
self.arabic_texts = [
"رؤية 2030 هي إطار استراتيجي لتقليل الاعتماد على النفط وتنويع الاقتصاد.",
"الركائز الرئيسية لرؤية 2030 هي مجتمع حيوي، واقتصاد مزدهر، ووطن طموح.",
"نيوم مدينة ذكية مخططة في تبوك، مشروع رئيسي لرؤية 2030."
]
self.pdf_english_texts = []
self.pdf_arabic_texts = []
@spaces.GPU
def _create_indices(self):
"""Create scalable FAISS indices"""
try:
# English index with IVF for scalability
english_vectors = [self.english_embedder.encode(text) for text in self.english_texts]
dim = len(english_vectors[0])
nlist = max(1, len(english_vectors) // 10)
quantizer = faiss.IndexFlatL2(dim)
self.english_index = faiss.IndexIVFFlat(quantizer, dim, nlist)
self.english_index.train(np.array(english_vectors))
self.english_index.add(np.array(english_vectors))
# Arabic index
arabic_vectors = [self.arabic_embedder.encode(text) for text in self.arabic_texts]
self.arabic_index = faiss.IndexIVFFlat(quantizer, dim, nlist)
self.arabic_index.train(np.array(arabic_vectors))
self.arabic_index.add(np.array(arabic_vectors))
logger.info("FAISS indices created successfully")
except Exception as e:
logger.error(f"Error creating indices: {e}")
def _create_sample_eval_data(self):
"""Sample evaluation data"""
self.eval_data = [
{"question": "What are the key pillars of Vision 2030?", "lang": "en", "reference": "The key pillars of Vision 2030 are a vibrant society, a thriving economy, and an ambitious nation."},
{"question": "ما هي الركائز الرئيسية لرؤية 2030؟", "lang": "ar", "reference": "الركائز الرئيسية لرؤية 2030 هي مجتمع حيوي، واقتصاد مزدهر، ووطن طموح."}
]
@spaces.GPU
def retrieve_context(self, query, lang, session_id):
"""Retrieve context with session history integration"""
try:
# Incorporate session history
history = self.session_history.get(session_id, [])
history_context = " ".join([f"Q: {q} A: {a}" for q, a in history[-2:]]) # Last 2 interactions
# Embed query
embedder = self.arabic_embedder if lang == "ar" else self.english_embedder
query_vec = embedder.encode(query)
# Search appropriate index
index = self.pdf_arabic_index if (lang == "ar" and self.has_pdf_content) else \
self.pdf_english_index if (lang == "en" and self.has_pdf_content) else \
self.arabic_index if lang == "ar" else self.english_index
texts = self.pdf_arabic_texts if (lang == "ar" and self.has_pdf_content) else \
self.pdf_english_texts if (lang == "en" and self.has_pdf_content) else \
self.arabic_texts if lang == "ar" else self.english_texts
D, I = index.search(np.array([query_vec]), k=2)
context = "\n".join([texts[i] for i in I[0] if i >= 0]) + f"\nHistory: {history_context}"
return context if context.strip() else "No relevant information found."
except Exception as e:
logger.error(f"Retrieval error: {e}")
return "Error retrieving context."
@spaces.GPU
def generate_response(self, query, session_id):
"""Generate advanced responses with error handling"""
if not query.strip():
return "Please enter a valid question."
start_time = time.time()
try:
lang = "ar" if any('\u0600' <= c <= '\u06FF' for c in query) else "en"
context = self.retrieve_context(query, lang, session_id)
if "Error" in context or "No relevant" in context:
reply = context
elif self.generator:
prompt = f"Context: {context}\nQuestion: {query}\nAnswer:"
response = self.generator(prompt, max_length=150, num_return_sequences=1, do_sample=True, temperature=0.7)
reply = response[0]['generated_text'].split("Answer:")[-1].strip()
else:
reply = context # Fallback
# Update session history
self.session_history.setdefault(session_id, []).append((query, reply))
self.metrics["response_times"].append(time.time() - start_time)
return reply
except Exception as e:
logger.error(f"Response generation error: {e}")
return "Sorry, an error occurred. Please try again."
def evaluate_factual_accuracy(self, response, reference):
"""Evaluate using semantic similarity"""
try:
embedder = self.english_embedder # Assuming reference is in English; extend for Arabic if needed
response_vec = embedder.encode(response)
reference_vec = embedder.encode(reference)
similarity = util.cos_sim(response_vec, reference_vec).item()
return similarity
except Exception as e:
logger.error(f"Evaluation error: {e}")
return 0.0
@spaces.GPU
def process_pdf(self, file):
"""Process PDF with scalability and error handling"""
if not file:
return "Please upload a PDF file."
try:
pdf_reader = PyPDF2.PdfReader(io.BytesIO(file))
text = "".join([page.extract_text() or "" for page in pdf_reader.pages])
if not text.strip():
return "No extractable text found in PDF."
# Chunk text for scalability
chunks = [text[i:i+300] for i in range(0, len(text), 300)]
self.pdf_english_texts = [c for c in chunks if not any('\u0600' <= char <= '\u06FF' for char in c)]
self.pdf_arabic_texts = [c for c in chunks if any('\u0600' <= char <= '\u06FF' for char in c)]
# Batch process embeddings
batch_size = 32
for lang, texts, embedder in [("en", self.pdf_english_texts, self.english_embedder),
("ar", self.pdf_arabic_texts, self.arabic_embedder)]:
if texts:
vectors = []
for i in range(0, len(texts), batch_size):
batch = texts[i:i+batch_size]
vectors.extend(embedder.encode(batch))
dim = len(vectors[0])
nlist = max(1, len(vectors) // 10)
quantizer = faiss.IndexFlatL2(dim)
index = faiss.IndexIVFFlat(quantizer, dim, nlist)
index.train(np.array(vectors))
index.add(np.array(vectors))
setattr(self, f"pdf_{lang}_index", index)
self.has_pdf_content = True
return f"PDF processed: {len(self.pdf_english_texts)} English, {len(self.pdf_arabic_texts)} Arabic chunks."
except Exception as e:
logger.error(f"PDF processing error: {e}")
return f"Error processing PDF: {e}"
# Gradio Interface
def create_interface():
assistant = Vision2030Assistant()
def chat(query, history, session_id):
reply = assistant.generate_response(query, session_id)
history.append((query, reply))
return history, ""
with gr.Blocks() as demo:
gr.Markdown("# Vision 2030 Virtual Assistant")
session_id = gr.State(value="user1") # Simple session ID; enhance with authentication
chatbot = gr.Chatbot()
msg = gr.Textbox(label="Ask a question")
submit = gr.Button("Submit")
pdf_upload = gr.File(label="Upload PDF", type="binary")
upload_status = gr.Textbox(label="Upload Status")
submit.click(chat, [msg, chatbot, session_id], [chatbot, msg])
pdf_upload.upload(assistant.process_pdf, pdf_upload, upload_status)
return demo
demo = create_interface()
demo.launch() |