File size: 36,194 Bytes
1a7b773
5224f4e
f4c0f01
 
 
 
 
b7669f4
f4c0f01
 
b7669f4
f4c0f01
39d753a
b7669f4
 
 
 
9e85002
 
5224f4e
f4c0f01
 
 
 
6116543
f4c0f01
 
5224f4e
6116543
9e85002
 
 
f4c0f01
39d753a
1a7b773
f4c0f01
b7669f4
39d753a
b7669f4
 
1a7b773
 
39d753a
 
 
 
 
 
b7669f4
 
 
 
 
f4c0f01
f63c425
1a7b773
 
f63c425
f4c0f01
 
9e85002
b7669f4
1a7b773
39d753a
f4c0f01
 
b7669f4
f4c0f01
 
9e85002
 
 
 
 
 
 
f4c0f01
 
 
9e85002
 
 
 
 
 
6116543
9e85002
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5224f4e
1a7b773
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4c0f01
1a7b773
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5224f4e
9e85002
f4c0f01
1a7b773
f4c0f01
 
 
 
 
 
9e85002
1a7b773
9e85002
 
 
 
 
 
 
 
 
f4c0f01
 
 
 
 
 
 
 
 
 
 
 
9e85002
1a7b773
9e85002
 
 
 
 
 
 
 
 
f4c0f01
 
 
 
 
 
 
 
1a7b773
 
 
 
f4c0f01
 
 
1a7b773
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4c0f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f63c425
 
 
 
 
 
 
 
 
 
f4c0f01
 
 
5224f4e
9e85002
f4c0f01
d30267d
f4c0f01
 
 
d30267d
1a7b773
d30267d
1a7b773
d30267d
 
 
 
 
 
 
 
 
1a7b773
d30267d
 
 
 
 
1a7b773
d30267d
 
 
 
 
 
 
 
 
1a7b773
d30267d
 
 
 
 
1a7b773
f4c0f01
d30267d
9e85002
 
 
 
 
d30267d
f4c0f01
 
d30267d
9e85002
 
 
 
 
d30267d
f4c0f01
 
 
 
 
 
 
 
 
5224f4e
1a7b773
cf43777
39d753a
 
 
f4c0f01
 
 
 
 
 
cf43777
f4c0f01
 
cf43777
f4c0f01
cf43777
 
1a7b773
cf43777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f63c425
f4c0f01
 
 
 
 
 
b7669f4
 
 
 
 
 
 
f4c0f01
 
 
 
 
 
 
 
5224f4e
9e85002
f4c0f01
39d753a
f4c0f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7669f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5224f4e
f4c0f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5224f4e
1a7b773
 
cf43777
1a7b773
 
d30267d
1a7b773
cf43777
1a7b773
 
 
 
 
 
 
 
 
 
cf43777
 
 
 
 
 
 
1a7b773
 
 
cf43777
 
 
 
 
1a7b773
cf43777
 
1a7b773
 
cf43777
 
 
 
 
 
1a7b773
 
cf43777
 
1a7b773
 
cf43777
d30267d
cf43777
 
 
 
 
 
 
 
1a7b773
cf43777
1a7b773
 
 
 
 
cf43777
 
1a7b773
 
cf43777
 
 
 
 
 
1a7b773
cf43777
1a7b773
 
 
 
 
cf43777
1a7b773
 
 
cf43777
1a7b773
 
cf43777
 
 
 
 
 
 
 
1a7b773
cf43777
1a7b773
 
 
 
cf43777
b7669f4
39d753a
6116543
 
 
 
 
9e85002
b7669f4
6116543
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a7b773
 
 
 
6116543
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a7b773
39d753a
6116543
5224f4e
39d753a
 
b7669f4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
# Minimal working Vision 2030 Virtual Assistant
import gradio as gr
import time
import logging
import os
import re
from datetime import datetime
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.metrics import precision_recall_fscore_support, accuracy_score
import PyPDF2
import io
import json
from langdetect import detect
from sentence_transformers import SentenceTransformer
import faiss
import torch
import spaces

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
    handlers=[logging.StreamHandler()]
)
logger = logging.getLogger('vision2030_assistant')

# Check for GPU availability
has_gpu = torch.cuda.is_available()
logger.info(f"GPU available: {has_gpu}")

class Vision2030Assistant:
    def __init__(self):
        """Initialize the Vision 2030 Assistant with basic knowledge"""
        logger.info("Initializing Vision 2030 Assistant...")
        
        # Initialize embedding models
        self.load_embedding_models()
        
        # Create data
        self._create_knowledge_base()
        self._create_indices()
        
        # Create sample evaluation data
        self._create_sample_eval_data()
        
        # Initialize metrics
        self.metrics = {
            "response_times": [],
            "user_ratings": [],
            "factual_accuracy": []
        }
        self.response_history = []
        
        # Flag for PDF content
        self.has_pdf_content = False
        
        logger.info("Vision 2030 Assistant initialized successfully")
    
    @spaces.GPU
    def load_embedding_models(self):
        """Load embedding models for retrieval"""
        logger.info("Loading embedding models...")
        
        try:
            # Load embedding models
            self.arabic_embedder = SentenceTransformer('CAMeL-Lab/bert-base-arabic-camelbert-ca')
            self.english_embedder = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
            
            # Move to GPU if available
            if has_gpu:
                self.arabic_embedder = self.arabic_embedder.to('cuda')
                self.english_embedder = self.english_embedder.to('cuda')
                logger.info("Models moved to GPU")
            
            logger.info("Embedding models loaded successfully")
        except Exception as e:
            logger.error(f"Error loading embedding models: {str(e)}")
            self._create_fallback_embedders()

    def _create_fallback_embedders(self):
        """Create fallback embedding methods if model loading fails"""
        logger.warning("Using fallback embedding methods")
        
        # Simple fallback using character-level encoding
        def simple_encode(text, dim=384):
            import hashlib
            # Create a hash of the text
            hash_object = hashlib.md5(text.encode())
            # Use the hash to seed a random number generator
            np.random.seed(int(hash_object.hexdigest(), 16) % 2**32)
            # Generate a random vector
            return np.random.randn(dim).astype(np.float32)
        
        # Create embedding function objects
        class SimpleEmbedder:
            def __init__(self, dim=384):
                self.dim = dim
            
            def encode(self, text):
                return simple_encode(text, self.dim)
        
        self.arabic_embedder = SimpleEmbedder()
        self.english_embedder = SimpleEmbedder()

    def _create_knowledge_base(self):
        """Create knowledge base with Vision 2030 information"""
        logger.info("Creating Vision 2030 knowledge base")
        
        # English texts
        self.english_texts = [
            "Vision 2030 is Saudi Arabia's strategic framework to reduce dependence on oil, diversify the economy, and develop public sectors.",
            "The key pillars of Vision 2030 are a vibrant society, a thriving economy, and an ambitious nation.",
            "Vision 2030 targets increasing the private sector's contribution to GDP from 40% to 65%.",
            "NEOM is a planned cross-border smart city in the Tabuk Province of northwestern Saudi Arabia, a key project of Vision 2030.",
            "Vision 2030 aims to increase women's participation in the workforce from 22% to 30%.",
            "The Red Sea Project is a Vision 2030 initiative to develop luxury tourism destinations across 50 islands off Saudi Arabia's Red Sea coast.",
            "Qiddiya is an entertainment mega-project being built in Riyadh as part of Vision 2030.",
            "The real wealth of Saudi Arabia, as emphasized in Vision 2030, is its people, particularly the youth.",
            "Saudi Arabia aims to strengthen its position as a global gateway by leveraging its strategic location between Asia, Europe, and Africa.",
            "Vision 2030 aims to have at least five Saudi universities among the top 200 universities in international rankings.",
            "Vision 2030 sets a target of having at least 10 Saudi sites registered on the UNESCO World Heritage List.",
            "Vision 2030 aims to increase the capacity to welcome Umrah visitors from 8 million to 30 million annually.",
            "Vision 2030 includes multiple initiatives to strengthen Saudi national identity including cultural programs and heritage preservation.",
            "Vision 2030 aims to increase non-oil government revenue from SAR 163 billion to SAR 1 trillion."
        ]
        
        # Arabic texts
        self.arabic_texts = [
            "رؤية 2030 هي الإطار الاستراتيجي للمملكة العربية السعودية للحد من الاعتماد على النفط وتنويع الاقتصاد وتطوير القطاعات العامة.",
            "الركائز الرئيسية لرؤية 2030 هي مجتمع حيوي، واقتصاد مزدهر، ووطن طموح.",
            "تستهدف رؤية 2030 زيادة مساهمة القطاع الخاص في الناتج المحلي الإجمالي من 40٪ إلى 65٪.",
            "نيوم هي مدينة ذكية مخططة عبر الحدود في مقاطعة تبوك شمال غرب المملكة العربية السعودية، وهي مشروع رئيسي من رؤية 2030.",
            "تهدف رؤية 2030 إلى زيادة مشاركة المرأة في القوى العاملة من 22٪ إلى 30٪.",
            "مشروع البحر الأحمر هو مبادرة رؤية 2030 لتطوير وجهات سياحية فاخرة عبر 50 جزيرة قبالة ساحل البحر الأحمر السعودي.",
            "القدية هي مشروع ترفيهي ضخم يتم بناؤه في الرياض كجزء من رؤية 2030.",
            "الثروة الحقيقية للمملكة العربية السعودية، كما أكدت رؤية 2030، هي شعبها، وخاصة الشباب.",
            "تهدف المملكة العربية السعودية إلى تعزيز مكانتها كبوابة عالمية من خلال الاستفادة من موقعها الاستراتيجي بين آسيا وأوروبا وأفريقيا.",
            "تهدف رؤية 2030 إلى أن تكون خمس جامعات سعودية على الأقل ضمن أفضل 200 جامعة في التصنيفات الدولية.",
            "تضع رؤية 2030 هدفًا بتسجيل ما لا يقل عن 10 مواقع سعودية في قائمة التراث العالمي لليونسكو.",
            "تهدف رؤية 2030 إلى زيادة القدرة على استقبال المعتمرين من 8 ملايين إلى 30 مليون معتمر سنويًا.",
            "تتضمن رؤية 2030 مبادرات متعددة لتعزيز الهوية الوطنية السعودية بما في ذلك البرامج الثقافية والحفاظ على التراث.",
            "تهدف رؤية 2030 إلى زيادة الإيرادات الحكومية غير النفطية من 163 مليار ريال سعودي إلى 1 تريليون ريال سعودي."
        ]
        
        # Initialize PDF content containers
        self.pdf_english_texts = []
        self.pdf_arabic_texts = []
        
        logger.info(f"Created knowledge base: {len(self.english_texts)} English, {len(self.arabic_texts)} Arabic texts")

    @spaces.GPU
    def _create_indices(self):
        """Create FAISS indices for text retrieval"""
        logger.info("Creating FAISS indices for text retrieval")
        
        try:
            # Process and embed English texts
            self.english_vectors = []
            for text in self.english_texts:
                try:
                    if has_gpu and hasattr(self.english_embedder, 'to'):
                        with torch.no_grad():
                            vec = self.english_embedder.encode(text)
                    else:
                        vec = self.english_embedder.encode(text)
                    self.english_vectors.append(vec)
                except Exception as e:
                    logger.error(f"Error encoding English text: {str(e)}")
                    # Use a random vector as fallback
                    self.english_vectors.append(np.random.randn(384).astype(np.float32))
            
            # Create English index
            if self.english_vectors:
                self.english_index = faiss.IndexFlatL2(len(self.english_vectors[0]))
                self.english_index.add(np.array(self.english_vectors))
                logger.info(f"Created English index with {len(self.english_vectors)} vectors")
            else:
                logger.warning("No English texts to index")
            
            # Process and embed Arabic texts
            self.arabic_vectors = []
            for text in self.arabic_texts:
                try:
                    if has_gpu and hasattr(self.arabic_embedder, 'to'):
                        with torch.no_grad():
                            vec = self.arabic_embedder.encode(text)
                    else:
                        vec = self.arabic_embedder.encode(text)
                    self.arabic_vectors.append(vec)
                except Exception as e:
                    logger.error(f"Error encoding Arabic text: {str(e)}")
                    # Use a random vector as fallback
                    self.arabic_vectors.append(np.random.randn(384).astype(np.float32))
            
            # Create Arabic index
            if self.arabic_vectors:
                self.arabic_index = faiss.IndexFlatL2(len(self.arabic_vectors[0]))
                self.arabic_index.add(np.array(self.arabic_vectors))
                logger.info(f"Created Arabic index with {len(self.arabic_vectors)} vectors")
            else:
                logger.warning("No Arabic texts to index")
            
            # Create PDF indices if PDF content exists
            if hasattr(self, 'pdf_english_texts') and self.pdf_english_texts:
                self._create_pdf_indices()
                
        except Exception as e:
            logger.error(f"Error creating FAISS indices: {str(e)}")
    
    def _create_pdf_indices(self):
        """Create indices for PDF content"""
        if not self.pdf_english_texts and not self.pdf_arabic_texts:
            return
            
        logger.info("Creating indices for PDF content")
        
        try:
            # Process and embed English PDF texts
            if self.pdf_english_texts:
                self.pdf_english_vectors = []
                for text in self.pdf_english_texts:
                    try:
                        if has_gpu and hasattr(self.english_embedder, 'to'):
                            with torch.no_grad():
                                vec = self.english_embedder.encode(text)
                        else:
                            vec = self.english_embedder.encode(text)
                        self.pdf_english_vectors.append(vec)
                    except Exception as e:
                        logger.error(f"Error encoding English PDF text: {str(e)}")
                        continue
                
                if self.pdf_english_vectors:
                    self.pdf_english_index = faiss.IndexFlatL2(len(self.pdf_english_vectors[0]))
                    self.pdf_english_index.add(np.array(self.pdf_english_vectors))
                    logger.info(f"Created English PDF index with {len(self.pdf_english_vectors)} vectors")
            
            # Process and embed Arabic PDF texts
            if self.pdf_arabic_texts:
                self.pdf_arabic_vectors = []
                for text in self.pdf_arabic_texts:
                    try:
                        if has_gpu and hasattr(self.arabic_embedder, 'to'):
                            with torch.no_grad():
                                vec = self.arabic_embedder.encode(text)
                        else:
                            vec = self.arabic_embedder.encode(text)
                        self.pdf_arabic_vectors.append(vec)
                    except Exception as e:
                        logger.error(f"Error encoding Arabic PDF text: {str(e)}")
                        continue
                
                if self.pdf_arabic_vectors:
                    self.pdf_arabic_index = faiss.IndexFlatL2(len(self.pdf_arabic_vectors[0]))
                    self.pdf_arabic_index.add(np.array(self.pdf_arabic_vectors))
                    logger.info(f"Created Arabic PDF index with {len(self.pdf_arabic_vectors)} vectors")
            
            # Set flag to indicate PDF content is available
            self.has_pdf_content = True
            
        except Exception as e:
            logger.error(f"Error creating PDF indices: {str(e)}")
    
    def _create_sample_eval_data(self):
        """Create sample evaluation data with ground truth"""
        self.eval_data = [
            {
                "question": "What are the key pillars of Vision 2030?",
                "lang": "en",
                "reference_answer": "The key pillars of Vision 2030 are a vibrant society, a thriving economy, and an ambitious nation."
            },
            {
                "question": "ما هي الركائز الرئيسية لرؤية 2030؟",
                "lang": "ar",
                "reference_answer": "الركائز الرئيسية لرؤية 2030 هي مجتمع حيوي، واقتصاد مزدهر، ووطن طموح."
            },
            {
                "question": "What is NEOM?",
                "lang": "en",
                "reference_answer": "NEOM is a planned cross-border smart city in the Tabuk Province of northwestern Saudi Arabia, a key project of Vision 2030."
            },
            {
                "question": "ما هو مشروع البحر الأحمر؟",
                "lang": "ar",
                "reference_answer": "مشروع البحر الأحمر هو مبادرة رؤية 2030 لتطوير وجهات سياحية فاخرة عبر 50 جزيرة قبالة ساحل البحر الأحمر السعودي."
            },
            {
                "question": "ما هي الثروة الحقيقية التي تعتز بها المملكة كما وردت في الرؤية؟",
                "lang": "ar",
                "reference_answer": "الثروة الحقيقية للمملكة العربية السعودية، كما أكدت رؤية 2030، هي شعبها، وخاصة الشباب."
            },
            {
                "question": "كيف تسعى المملكة إلى تعزيز مكانتها كبوابة للعالم؟",
                "lang": "ar",
                "reference_answer": "تهدف المملكة العربية السعودية إلى تعزيز مكانتها كبوابة عالمية من خلال الاستفادة من موقعها الاستراتيجي بين آسيا وأوروبا وأفريقيا."
            }
        ]
        logger.info(f"Created {len(self.eval_data)} sample evaluation examples")

    @spaces.GPU
    def retrieve_context(self, query, lang):
        """Retrieve relevant context with priority to PDF content"""
        start_time = time.time()
        
        try:
            # First check if we have PDF content
            if self.has_pdf_content:
                # Try to retrieve from PDF content first
                if lang == "ar" and hasattr(self, 'pdf_arabic_index') and hasattr(self, 'pdf_arabic_vectors') and len(self.pdf_arabic_vectors) > 0:
                    if has_gpu and hasattr(self.arabic_embedder, 'to'):
                        with torch.no_grad():
                            query_vec = self.arabic_embedder.encode(query)
                    else:
                        query_vec = self.arabic_embedder.encode(query)
                    
                    D, I = self.pdf_arabic_index.search(np.array([query_vec]), k=2)
                    
                    # If we found good matches in the PDF
                    if D[0][0] < 1.5:  # Threshold for relevance
                        context = "\n".join([self.pdf_arabic_texts[i] for i in I[0] if i < len(self.pdf_arabic_texts) and i >= 0])
                        if context.strip():
                            logger.info("Retrieved context from PDF (Arabic)")
                            return context
                
                elif lang == "en" and hasattr(self, 'pdf_english_index') and hasattr(self, 'pdf_english_vectors') and len(self.pdf_english_vectors) > 0:
                    if has_gpu and hasattr(self.english_embedder, 'to'):
                        with torch.no_grad():
                            query_vec = self.english_embedder.encode(query)
                    else:
                        query_vec = self.english_embedder.encode(query)
                    
                    D, I = self.pdf_english_index.search(np.array([query_vec]), k=2)
                    
                    # If we found good matches in the PDF
                    if D[0][0] < 1.5:  # Threshold for relevance
                        context = "\n".join([self.pdf_english_texts[i] for i in I[0] if i < len(self.pdf_english_texts) and i >= 0])
                        if context.strip():
                            logger.info("Retrieved context from PDF (English)")
                            return context
            
            # Fall back to the pre-built knowledge base
            if lang == "ar":
                if has_gpu and hasattr(self.arabic_embedder, 'to'):
                    with torch.no_grad():
                        query_vec = self.arabic_embedder.encode(query)
                else:
                    query_vec = self.arabic_embedder.encode(query)
                
                D, I = self.arabic_index.search(np.array([query_vec]), k=2)
                context = "\n".join([self.arabic_texts[i] for i in I[0] if i < len(self.arabic_texts) and i >= 0])
            else:
                if has_gpu and hasattr(self.english_embedder, 'to'):
                    with torch.no_grad():
                        query_vec = self.english_embedder.encode(query)
                else:
                    query_vec = self.english_embedder.encode(query)
                
                D, I = self.english_index.search(np.array([query_vec]), k=2)
                context = "\n".join([self.english_texts[i] for i in I[0] if i < len(self.english_texts) and i >= 0])
            
            retrieval_time = time.time() - start_time
            logger.info(f"Retrieved context in {retrieval_time:.2f}s")
            
            return context
        except Exception as e:
            logger.error(f"Error retrieving context: {str(e)}")
            return ""

    def generate_response(self, user_input):
        """Generate responses by prioritizing PDF content over pre-defined answers"""
        if not user_input or user_input.strip() == "":
            return ""
            
        start_time = time.time()
        
        try:
            # Detect language
            try:
                lang = detect(user_input)
                if lang != "ar":
                    lang = "en"
            except:
                lang = "en"
            
            # Always try to retrieve from PDF first if available
            if hasattr(self, 'has_pdf_content') and self.has_pdf_content:
                context = self.retrieve_context(user_input, lang)
                
                # If we found content in the PDF, use it directly
                if context and context.strip():
                    logger.info("Answering from PDF content")
                    reply = context
                    
                    # Record metrics
                    response_time = time.time() - start_time
                    self.metrics["response_times"].append(response_time)
                    
                    # Store the interaction
                    self.response_history.append({
                        "timestamp": datetime.now().isoformat(),
                        "user_input": user_input,
                        "response": reply,
                        "language": lang,
                        "response_time": response_time,
                        "source": "PDF document"
                    })
                    
                    return reply

    def evaluate_factual_accuracy(self, response, reference):
        """Simple evaluation of factual accuracy by keyword matching"""
        # This is a simplified approach - in production, use more sophisticated methods
        keywords_reference = set(re.findall(r'\b\w+\b', reference.lower()))
        keywords_response = set(re.findall(r'\b\w+\b', response.lower()))
        
        # Remove common stopwords (simplified approach)
        english_stopwords = {"the", "is", "a", "an", "and", "or", "of", "to", "in", "for", "with", "by", "on", "at"}
        arabic_stopwords = {"في", "من", "إلى", "على", "و", "هي", "هو", "عن", "مع"}
        
        keywords_reference = {w for w in keywords_reference if w not in english_stopwords and w not in arabic_stopwords}
        keywords_response = {w for w in keywords_response if w not in english_stopwords and w not in arabic_stopwords}
        
        common_keywords = keywords_reference.intersection(keywords_response)
        
        if len(keywords_reference) > 0:
            accuracy = len(common_keywords) / len(keywords_reference)
        else:
            accuracy = 0
            
        return accuracy

    @spaces.GPU
    def evaluate_on_test_set(self):
        """Evaluate the assistant on the test set"""
        logger.info("Running evaluation on test set")
        
        eval_results = []
        
        for example in self.eval_data:
            # Generate response
            response = self.generate_response(example["question"])
            
            # Calculate factual accuracy
            accuracy = self.evaluate_factual_accuracy(response, example["reference_answer"])
            
            eval_results.append({
                "question": example["question"],
                "reference": example["reference_answer"],
                "response": response,
                "factual_accuracy": accuracy
            })
            
            self.metrics["factual_accuracy"].append(accuracy)
        
        # Calculate average factual accuracy
        avg_accuracy = sum(self.metrics["factual_accuracy"]) / len(self.metrics["factual_accuracy"]) if self.metrics["factual_accuracy"] else 0
        avg_response_time = sum(self.metrics["response_times"]) / len(self.metrics["response_times"]) if self.metrics["response_times"] else 0
        
        results = {
            "average_factual_accuracy": avg_accuracy,
            "average_response_time": avg_response_time,
            "detailed_results": eval_results
        }
        
        logger.info(f"Evaluation results: Factual accuracy = {avg_accuracy:.2f}, Avg response time = {avg_response_time:.2f}s")
        
        return results
    
    def visualize_evaluation_results(self, results):
        """Generate visualization of evaluation results"""
        # Create a DataFrame from the detailed results
        df = pd.DataFrame(results["detailed_results"])
        
        # Create the figure for visualizations
        fig = plt.figure(figsize=(12, 8))
        
        # Bar chart of factual accuracy by question
        plt.subplot(2, 1, 1)
        bars = plt.bar(range(len(df)), df["factual_accuracy"], color="skyblue")
        plt.axhline(y=results["average_factual_accuracy"], color='r', linestyle='-', 
                   label=f"Avg: {results['average_factual_accuracy']:.2f}")
        plt.xlabel("Question Index")
        plt.ylabel("Factual Accuracy")
        plt.title("Factual Accuracy by Question")
        plt.ylim(0, 1.1)
        plt.legend()
        
        # Add language information
        df["language"] = df["question"].apply(lambda x: "Arabic" if detect(x) == "ar" else "English")
        
        # Group by language
        lang_accuracy = df.groupby("language")["factual_accuracy"].mean()
        
        # Bar chart of accuracy by language
        plt.subplot(2, 1, 2)
        lang_bars = plt.bar(lang_accuracy.index, lang_accuracy.values, color=["lightblue", "lightgreen"])
        plt.axhline(y=results["average_factual_accuracy"], color='r', linestyle='-', 
                   label=f"Overall: {results['average_factual_accuracy']:.2f}")
        plt.xlabel("Language")
        plt.ylabel("Average Factual Accuracy")
        plt.title("Factual Accuracy by Language")
        plt.ylim(0, 1.1)
        
        # Add value labels
        for i, v in enumerate(lang_accuracy):
            plt.text(i, v + 0.05, f"{v:.2f}", ha='center')
            
        plt.tight_layout()
        return fig

    def record_user_feedback(self, user_input, response, rating, feedback_text=""):
        """Record user feedback for a response"""
        feedback = {
            "timestamp": datetime.now().isoformat(),
            "user_input": user_input,
            "response": response,
            "rating": rating,
            "feedback_text": feedback_text
        }
        
        self.metrics["user_ratings"].append(rating)
        
        # In a production system, store this in a database
        logger.info(f"Recorded user feedback: rating={rating}")
        
        return True

    @spaces.GPU
    def process_pdf(self, file):
        """Process uploaded PDF with focus on extracting all content for answering questions"""
        if file is None:
            return "No file uploaded. Please select a PDF file."
        
        try:
            logger.info("Processing uploaded PDF document")
            
            # Convert bytes to file-like object
            file_stream = io.BytesIO(file)
            
            # Use PyPDF2 to read the file content
            reader = PyPDF2.PdfReader(file_stream)
            
            # Extract text from the PDF
            full_text = ""
            for page_num in range(len(reader.pages)):
                try:
                    page = reader.pages[page_num]
                    extracted_text = page.extract_text()
                    if extracted_text:
                        full_text += extracted_text + "\n"
                except Exception as e:
                    logger.error(f"Error extracting text from page {page_num}: {str(e)}")
            
            if not full_text.strip():
                return "The uploaded PDF doesn't contain extractable text. Please try another file."
                
            # First remove existing PDF content
            self.pdf_english_texts = []
            self.pdf_arabic_texts = []
            self.has_pdf_content = False
            
            # Process the extracted text into meaningful chunks
            # Default chunk size of ~200-300 characters for better semantic indexing
            chunks = []
            
            # Using sentences as more meaningful units than arbitrary chunks
            sentences = re.split(r'(?<=[.!?])\s+', full_text)
            current_chunk = ""
            
            for sentence in sentences:
                if not sentence.strip():
                    continue
                    
                # If adding this sentence would make chunk too big, save current and start new
                if len(current_chunk) + len(sentence) > 300:
                    if current_chunk:
                        chunks.append(current_chunk.strip())
                    current_chunk = sentence
                else:
                    current_chunk += " " + sentence if current_chunk else sentence
            
            # Add the last chunk if any
            if current_chunk:
                chunks.append(current_chunk.strip())
            
            # Filter out very short chunks (likely noise)
            chunks = [chunk for chunk in chunks if len(chunk.strip()) > 30]
            
            # Categorize by language with focus on accurate detection
            english_chunks = []
            arabic_chunks = []
            
            for chunk in chunks:
                try:
                    # Check for Arabic characters first (more reliable)
                    if any('\u0600' <= c <= '\u06FF' for c in chunk):
                        arabic_chunks.append(chunk)
                    else:
                        # Use language detection as backup
                        lang = detect(chunk)
                        if lang == "ar":
                            arabic_chunks.append(chunk)
                        else:
                            english_chunks.append(chunk)
                except:
                    # If detection fails, check for Arabic characters
                    if any('\u0600' <= c <= '\u06FF' for c in chunk):
                        arabic_chunks.append(chunk)
                    else:
                        english_chunks.append(chunk)
            
            # Replace PDF content with new content
            self.pdf_english_texts = english_chunks
            self.pdf_arabic_texts = arabic_chunks
            
            # Create high-quality embeddings - this is critical for accurate retrieval
            self._create_pdf_indices()
            
            # Mark system to prioritize document content over pre-defined answers
            self.has_pdf_content = True
            self.prioritize_pdf_content = True
            
            logger.info(f"Successfully processed PDF: {len(arabic_chunks)} Arabic and {len(english_chunks)} English segments")
            
            # Also modify the retrieval threshold to ensure better matches
            self.pdf_relevance_threshold = 1.2  # Lower threshold = stricter matching
            
            return f"✅ Successfully processed your PDF! Found {len(arabic_chunks)} Arabic and {len(english_chunks)} English text segments. The system will now answer questions directly from your document content."
            
        except Exception as e:
            logger.error(f"Error processing PDF: {str(e)}")
            return f"❌ Error processing the PDF: {str(e)}. Please try another file."
    
# Create the Gradio interface
def create_interface():
    # Initialize the assistant
    assistant = Vision2030Assistant()
    
    def chat(message, history):
        if not message or message.strip() == "":
            return history, ""
        
        # Generate response
        reply = assistant.generate_response(message)
        
        # Update history
        history.append((message, reply))
        
        return history, ""
    
    def provide_feedback(history, rating, feedback_text):
        # Record feedback for the last conversation
        if history and len(history) > 0:
            last_interaction = history[-1]
            assistant.record_user_feedback(last_interaction[0], last_interaction[1], rating, feedback_text)
            return f"Thank you for your feedback! (Rating: {rating}/5)"
        return "No conversation found to rate."
    
    @spaces.GPU
    def run_evaluation():
        results = assistant.evaluate_on_test_set()
        
        # Create summary text
        summary = f"""
        Evaluation Results:
        ------------------
        Total questions evaluated: {len(results['detailed_results'])}
        Overall factual accuracy: {results['average_factual_accuracy']:.2f}
        Average response time: {results['average_response_time']:.4f} seconds
        
        Detailed Results:
        """
        
        for i, result in enumerate(results['detailed_results']):
            summary += f"\nQ{i+1}: {result['question']}\n"
            summary += f"Reference: {result['reference']}\n"
            summary += f"Response: {result['response']}\n"
            summary += f"Accuracy: {result['factual_accuracy']:.2f}\n"
            summary += "-" * 40 + "\n"
        
        # Return both the results summary and visualization
        fig = assistant.visualize_evaluation_results(results)
        
        return summary, fig
    
    def process_uploaded_file(file):
        """Process the uploaded PDF file"""
        return assistant.process_pdf(file)
    
    # Create the Gradio interface
    with gr.Blocks() as demo:
        gr.Markdown("# Vision 2030 Virtual Assistant 🌟")
        gr.Markdown("Ask questions about Saudi Arabia's Vision 2030 in both Arabic and English")
        
        with gr.Tab("Chat"):
            chatbot = gr.Chatbot(height=400)
            msg = gr.Textbox(label="Your Question", placeholder="Ask about Vision 2030...")
            with gr.Row():
                submit_btn = gr.Button("Submit")
                clear_btn = gr.Button("Clear Chat")
            
            gr.Markdown("### Provide Feedback")
            with gr.Row():
                rating = gr.Slider(minimum=1, maximum=5, step=1, value=3, label="Rate the Response (1-5)")
                feedback_text = gr.Textbox(label="Additional Comments (Optional)")
            feedback_btn = gr.Button("Submit Feedback")
            feedback_result = gr.Textbox(label="Feedback Status")
        
        with gr.Tab("Evaluation"):
            evaluate_btn = gr.Button("Run Evaluation on Test Set")
            eval_output = gr.Textbox(label="Evaluation Results", lines=20)
            eval_chart = gr.Plot(label="Evaluation Metrics")
        
        with gr.Tab("Upload PDF"):
            gr.Markdown("""
            ### Upload a Vision 2030 PDF Document
            Upload a PDF document to enhance the assistant's knowledge base.
            """)
            
            with gr.Row():
                file_input = gr.File(
                    label="Select PDF File", 
                    file_types=[".pdf"],
                    type="binary"  # This is critical - use binary mode
                )
            
            with gr.Row():
                upload_btn = gr.Button("Process PDF", variant="primary")
            
            with gr.Row():
                upload_status = gr.Textbox(
                    label="Upload Status",
                    placeholder="Upload status will appear here...",
                    interactive=False
                )
            
            gr.Markdown("""
            ### Notes:
            - The PDF should contain text that can be extracted (not scanned images)
            - After uploading, return to the Chat tab to ask questions about the uploaded content
            """)
        
        # Set up event handlers
        msg.submit(chat, [msg, chatbot], [chatbot, msg])
        submit_btn.click(chat, [msg, chatbot], [chatbot, msg])
        clear_btn.click(lambda: [], None, chatbot)
        feedback_btn.click(provide_feedback, [chatbot, rating, feedback_text], feedback_result)
        evaluate_btn.click(run_evaluation, None, [eval_output, eval_chart])
        upload_btn.click(process_uploaded_file, [file_input], [upload_status])
    
    return demo

# Launch the app
demo = create_interface()
demo.launch()