Update app.py
Browse files
app.py
CHANGED
|
@@ -1,760 +1,116 @@
|
|
| 1 |
import os
|
| 2 |
-
import
|
| 3 |
-
import
|
| 4 |
-
import torch
|
| 5 |
-
import numpy as np
|
| 6 |
-
import pandas as pd
|
| 7 |
-
from tqdm import tqdm
|
| 8 |
-
from pathlib import Path
|
| 9 |
-
import spaces # Import spaces for GPU allocation
|
| 10 |
-
|
| 11 |
-
# PDF processing
|
| 12 |
-
import PyPDF2
|
| 13 |
-
|
| 14 |
-
# LLM and embeddings
|
| 15 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 16 |
-
from sentence_transformers import SentenceTransformer
|
| 17 |
-
|
| 18 |
-
# RAG components
|
| 19 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 20 |
-
from langchain_community.vectorstores import FAISS
|
| 21 |
-
from langchain.schema import Document
|
| 22 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
| 23 |
-
|
| 24 |
-
# Arabic text processing
|
| 25 |
-
import arabic_reshaper
|
| 26 |
-
from bidi.algorithm import get_display
|
| 27 |
-
|
| 28 |
-
# Evaluation
|
| 29 |
-
from rouge_score import rouge_scorer
|
| 30 |
-
import sacrebleu
|
| 31 |
-
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
|
| 32 |
-
import matplotlib.pyplot as plt
|
| 33 |
-
import seaborn as sns
|
| 34 |
-
from collections import defaultdict
|
| 35 |
-
|
| 36 |
-
# Gradio for the interface
|
| 37 |
import gradio as gr
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
"""Pure regex tokenizer with no NLTK dependency"""
|
| 42 |
-
if not text:
|
| 43 |
-
return []
|
| 44 |
-
# Replace punctuation with spaces around them
|
| 45 |
-
text = re.sub(r'([.,!?;:()\[\]{}"\'/\\])', r' \1 ', text)
|
| 46 |
-
# Split on whitespace and filter empty strings
|
| 47 |
-
return [token for token in re.split(r'\s+', text.lower()) if token]
|
| 48 |
-
|
| 49 |
-
def detect_language(text):
|
| 50 |
-
"""Detect if text is primarily Arabic or English"""
|
| 51 |
-
# Simple heuristic: count Arabic characters
|
| 52 |
-
arabic_chars = re.findall(r'[\u0600-\u06FF]', text)
|
| 53 |
-
is_arabic = len(arabic_chars) > len(text) * 0.5
|
| 54 |
-
return "arabic" if is_arabic else "english"
|
| 55 |
-
|
| 56 |
-
# Evaluation metrics
|
| 57 |
-
def calculate_bleu(prediction, reference):
|
| 58 |
-
"""Calculate BLEU score without any NLTK dependency"""
|
| 59 |
-
# Tokenize texts using our own tokenizer
|
| 60 |
-
pred_tokens = safe_tokenize(prediction.lower())
|
| 61 |
-
ref_tokens = [safe_tokenize(reference.lower())]
|
| 62 |
-
|
| 63 |
-
# If either is empty, return 0
|
| 64 |
-
if not pred_tokens or not ref_tokens[0]:
|
| 65 |
-
return {"bleu_1": 0, "bleu_2": 0, "bleu_4": 0}
|
| 66 |
-
|
| 67 |
-
# Get n-grams function
|
| 68 |
-
def get_ngrams(tokens, n):
|
| 69 |
-
return [tuple(tokens[i:i+n]) for i in range(len(tokens) - n + 1)]
|
| 70 |
-
|
| 71 |
-
# Calculate precision for each n-gram level
|
| 72 |
-
precisions = []
|
| 73 |
-
for n in range(1, 5): # 1-gram to 4-gram
|
| 74 |
-
if len(pred_tokens) < n:
|
| 75 |
-
precisions.append(0)
|
| 76 |
-
continue
|
| 77 |
-
|
| 78 |
-
pred_ngrams = get_ngrams(pred_tokens, n)
|
| 79 |
-
ref_ngrams = get_ngrams(ref_tokens[0], n)
|
| 80 |
-
|
| 81 |
-
# Count matches
|
| 82 |
-
matches = sum(1 for ng in pred_ngrams if ng in ref_ngrams)
|
| 83 |
-
|
| 84 |
-
# Calculate precision
|
| 85 |
-
if pred_ngrams:
|
| 86 |
-
precisions.append(matches / len(pred_ngrams))
|
| 87 |
-
else:
|
| 88 |
-
precisions.append(0)
|
| 89 |
-
|
| 90 |
-
# Return BLEU scores
|
| 91 |
-
return {
|
| 92 |
-
"bleu_1": precisions[0],
|
| 93 |
-
"bleu_2": (precisions[0] * precisions[1]) ** 0.5 if len(precisions) > 1 else 0,
|
| 94 |
-
"bleu_4": (precisions[0] * precisions[1] * precisions[2] * precisions[3]) ** 0.25 if len(precisions) > 3 else 0
|
| 95 |
-
}
|
| 96 |
-
|
| 97 |
-
def calculate_meteor(prediction, reference):
|
| 98 |
-
"""Simple word overlap metric as METEOR alternative"""
|
| 99 |
-
# Tokenize with our custom tokenizer
|
| 100 |
-
pred_tokens = set(safe_tokenize(prediction.lower()))
|
| 101 |
-
ref_tokens = set(safe_tokenize(reference.lower()))
|
| 102 |
-
|
| 103 |
-
# Calculate Jaccard similarity as METEOR alternative
|
| 104 |
-
if not pred_tokens or not ref_tokens:
|
| 105 |
-
return 0
|
| 106 |
-
|
| 107 |
-
intersection = len(pred_tokens.intersection(ref_tokens))
|
| 108 |
-
union = len(pred_tokens.union(ref_tokens))
|
| 109 |
-
|
| 110 |
-
return intersection / union if union > 0 else 0
|
| 111 |
-
|
| 112 |
-
def calculate_f1_precision_recall(prediction, reference):
|
| 113 |
-
"""Calculate word-level F1, precision, and recall with custom tokenizer"""
|
| 114 |
-
# Tokenize with our custom tokenizer
|
| 115 |
-
pred_tokens = set(safe_tokenize(prediction.lower()))
|
| 116 |
-
ref_tokens = set(safe_tokenize(reference.lower()))
|
| 117 |
-
|
| 118 |
-
# Calculate overlap
|
| 119 |
-
common = pred_tokens.intersection(ref_tokens)
|
| 120 |
-
|
| 121 |
-
# Calculate precision, recall, F1
|
| 122 |
-
precision = len(common) / len(pred_tokens) if pred_tokens else 0
|
| 123 |
-
recall = len(common) / len(ref_tokens) if ref_tokens else 0
|
| 124 |
-
f1 = 2 * precision * recall / (precision + recall) if (precision + recall) else 0
|
| 125 |
-
|
| 126 |
-
return {'precision': precision, 'recall': recall, 'f1': f1}
|
| 127 |
-
|
| 128 |
-
def evaluate_retrieval_quality(contexts, query, language):
|
| 129 |
-
"""Evaluate the quality of retrieved contexts"""
|
| 130 |
-
# This is a placeholder function that should be implemented based on
|
| 131 |
-
# how you want to evaluate retrieval quality
|
| 132 |
-
return {
|
| 133 |
-
'language_match_ratio': 1.0, # Placeholder
|
| 134 |
-
'source_diversity': len(set([ctx.get('source', '') for ctx in contexts])) / max(1, len(contexts)),
|
| 135 |
-
'mrr': 1.0 # Placeholder for Mean Reciprocal Rank
|
| 136 |
-
}
|
| 137 |
-
|
| 138 |
-
# PDF Processing and Vector Store
|
| 139 |
-
def simple_process_pdfs(pdf_paths):
|
| 140 |
-
"""Process PDF documents and return document objects"""
|
| 141 |
-
documents = []
|
| 142 |
-
|
| 143 |
-
print(f"Attempting to process PDFs: {pdf_paths}")
|
| 144 |
-
print(f"Current directory contents: {os.listdir('.')}")
|
| 145 |
-
|
| 146 |
-
for pdf_path in pdf_paths:
|
| 147 |
-
try:
|
| 148 |
-
if not os.path.exists(pdf_path):
|
| 149 |
-
print(f"Warning: {pdf_path} does not exist")
|
| 150 |
-
continue
|
| 151 |
-
|
| 152 |
-
print(f"Processing {pdf_path}...")
|
| 153 |
-
text = ""
|
| 154 |
-
with open(pdf_path, 'rb') as file:
|
| 155 |
-
reader = PyPDF2.PdfReader(file)
|
| 156 |
-
for page in reader.pages:
|
| 157 |
-
page_text = page.extract_text()
|
| 158 |
-
if page_text: # If we got text from this page
|
| 159 |
-
text += page_text + "\n\n"
|
| 160 |
-
|
| 161 |
-
if text.strip(): # If we got some text
|
| 162 |
-
doc = Document(
|
| 163 |
-
page_content=text,
|
| 164 |
-
metadata={"source": pdf_path, "filename": os.path.basename(pdf_path)}
|
| 165 |
-
)
|
| 166 |
-
documents.append(doc)
|
| 167 |
-
print(f"Successfully processed: {pdf_path}")
|
| 168 |
-
else:
|
| 169 |
-
print(f"Warning: No text extracted from {pdf_path}")
|
| 170 |
-
except Exception as e:
|
| 171 |
-
print(f"Error processing {pdf_path}: {e}")
|
| 172 |
-
import traceback
|
| 173 |
-
traceback.print_exc()
|
| 174 |
-
|
| 175 |
-
print(f"Processed {len(documents)} PDF documents")
|
| 176 |
-
return documents
|
| 177 |
-
|
| 178 |
-
def create_vector_store(documents):
|
| 179 |
-
"""Split documents into chunks and create a FAISS vector store"""
|
| 180 |
-
# Text splitter for breaking documents into chunks
|
| 181 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
| 182 |
-
chunk_size=500,
|
| 183 |
-
chunk_overlap=50,
|
| 184 |
-
separators=["\n\n", "\n", ".", "!", "?", ",", " ", ""]
|
| 185 |
-
)
|
| 186 |
-
|
| 187 |
-
# Split documents into chunks
|
| 188 |
-
chunks = []
|
| 189 |
-
for doc in documents:
|
| 190 |
-
doc_chunks = text_splitter.split_text(doc.page_content)
|
| 191 |
-
# Preserve metadata for each chunk
|
| 192 |
-
chunks.extend([
|
| 193 |
-
Document(page_content=chunk, metadata=doc.metadata)
|
| 194 |
-
for chunk in doc_chunks
|
| 195 |
-
])
|
| 196 |
-
|
| 197 |
-
print(f"Created {len(chunks)} chunks from {len(documents)} documents")
|
| 198 |
-
|
| 199 |
-
# Create a proper embedding function for LangChain
|
| 200 |
-
embedding_function = HuggingFaceEmbeddings(
|
| 201 |
-
model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
|
| 202 |
-
)
|
| 203 |
-
|
| 204 |
-
# Create FAISS index
|
| 205 |
-
vector_store = FAISS.from_documents(
|
| 206 |
-
chunks,
|
| 207 |
-
embedding_function
|
| 208 |
-
)
|
| 209 |
-
|
| 210 |
-
return vector_store
|
| 211 |
-
|
| 212 |
-
# Model Loading and RAG System
|
| 213 |
-
@spaces.GPU # Use GPU for model loading
|
| 214 |
-
def load_model_and_tokenizer():
|
| 215 |
-
"""Load the ALLaM-7B model and tokenizer with error handling"""
|
| 216 |
-
model_name = "ALLaM-AI/ALLaM-7B-Instruct-preview"
|
| 217 |
-
print(f"Loading model: {model_name}")
|
| 218 |
-
|
| 219 |
try:
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
use_fast=False
|
| 225 |
-
)
|
| 226 |
-
|
| 227 |
-
# Load model with appropriate settings for ALLaM
|
| 228 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 229 |
-
model_name,
|
| 230 |
-
torch_dtype=torch.bfloat16, # Use bfloat16 for better compatibility
|
| 231 |
-
trust_remote_code=True,
|
| 232 |
-
device_map="auto",
|
| 233 |
-
)
|
| 234 |
-
|
| 235 |
-
print("Model loaded successfully with AutoTokenizer!")
|
| 236 |
-
|
| 237 |
except Exception as e:
|
| 238 |
-
|
| 239 |
-
print("Trying alternative loading approach...")
|
| 240 |
-
|
| 241 |
-
# Try with specific tokenizer class if the first attempt fails
|
| 242 |
-
from transformers import LlamaTokenizer
|
| 243 |
-
|
| 244 |
-
tokenizer = LlamaTokenizer.from_pretrained(model_name)
|
| 245 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 246 |
-
model_name,
|
| 247 |
-
torch_dtype=torch.float16,
|
| 248 |
-
trust_remote_code=True,
|
| 249 |
-
device_map="auto",
|
| 250 |
-
)
|
| 251 |
-
|
| 252 |
-
print("Model loaded successfully with LlamaTokenizer!")
|
| 253 |
-
|
| 254 |
-
return model, tokenizer
|
| 255 |
|
| 256 |
-
def
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
results = vector_store.similarity_search_with_score(query, k=top_k)
|
| 260 |
-
|
| 261 |
-
# Format the retrieved contexts
|
| 262 |
-
contexts = []
|
| 263 |
-
for doc, score in results:
|
| 264 |
-
contexts.append({
|
| 265 |
-
"content": doc.page_content,
|
| 266 |
-
"source": doc.metadata.get("source", "Unknown"),
|
| 267 |
-
"relevance_score": score
|
| 268 |
-
})
|
| 269 |
-
|
| 270 |
-
return contexts
|
| 271 |
-
|
| 272 |
-
@spaces.GPU # Use GPU for text generation
|
| 273 |
-
def generate_response(query, contexts, model, tokenizer, language="auto"):
|
| 274 |
-
"""Generate a response using retrieved contexts with ALLaM-specific formatting"""
|
| 275 |
-
# Auto-detect language if not specified
|
| 276 |
-
if language == "auto":
|
| 277 |
-
language = detect_language(query)
|
| 278 |
-
|
| 279 |
-
# Format the prompt based on language
|
| 280 |
-
if language == "arabic":
|
| 281 |
-
instruction = (
|
| 282 |
-
"أنت مساعد افتراضي يهتم برؤية السعودية 2030. استخدم المعلومات التالية للإجابة على السؤال. "
|
| 283 |
-
"إذا لم تعرف الإجابة، فقل بأمانة إنك لا تعرف."
|
| 284 |
-
)
|
| 285 |
-
else: # english
|
| 286 |
-
instruction = (
|
| 287 |
-
"You are a virtual assistant for Saudi Vision 2030. Use the following information to answer the question. "
|
| 288 |
-
"If you don't know the answer, honestly say you don't know."
|
| 289 |
-
)
|
| 290 |
|
| 291 |
-
#
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
Context:
|
| 298 |
-
{context_text}
|
| 299 |
-
|
| 300 |
-
Question: {query} [/INST]</s>"""
|
| 301 |
|
|
|
|
| 302 |
try:
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
# Generate with appropriate parameters
|
| 307 |
-
outputs = model.generate(
|
| 308 |
-
inputs.input_ids,
|
| 309 |
-
attention_mask=inputs.attention_mask,
|
| 310 |
-
max_new_tokens=512,
|
| 311 |
-
temperature=0.7,
|
| 312 |
-
top_p=0.9,
|
| 313 |
-
do_sample=True,
|
| 314 |
-
repetition_penalty=1.1
|
| 315 |
-
)
|
| 316 |
-
|
| 317 |
-
# Decode the response
|
| 318 |
-
full_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 319 |
-
|
| 320 |
-
# Extract just the answer part (after the instruction)
|
| 321 |
-
response = full_output.split("[/INST]")[-1].strip()
|
| 322 |
-
|
| 323 |
-
# If response is empty for some reason, return the full output
|
| 324 |
-
if not response:
|
| 325 |
-
response = full_output
|
| 326 |
-
|
| 327 |
-
return response
|
| 328 |
-
|
| 329 |
except Exception as e:
|
| 330 |
-
|
| 331 |
-
# Fallback response
|
| 332 |
-
return "I apologize, but I encountered an error while generating a response."
|
| 333 |
-
|
| 334 |
-
# Assistant Class
|
| 335 |
-
class Vision2030Assistant:
|
| 336 |
-
def __init__(self, model, tokenizer, vector_store):
|
| 337 |
-
self.model = model
|
| 338 |
-
self.tokenizer = tokenizer
|
| 339 |
-
self.vector_store = vector_store
|
| 340 |
-
self.conversation_history = []
|
| 341 |
-
|
| 342 |
-
def answer(self, user_query):
|
| 343 |
-
"""Process a user query and return a response with sources"""
|
| 344 |
-
# Detect language
|
| 345 |
-
language = detect_language(user_query)
|
| 346 |
-
|
| 347 |
-
# Add user query to conversation history
|
| 348 |
-
self.conversation_history.append({"role": "user", "content": user_query})
|
| 349 |
-
|
| 350 |
-
# Get the full conversation context
|
| 351 |
-
conversation_context = "\n".join([
|
| 352 |
-
f"{'User' if msg['role'] == 'user' else 'Assistant'}: {msg['content']}"
|
| 353 |
-
for msg in self.conversation_history[-6:] # Keep last 3 turns (6 messages)
|
| 354 |
-
])
|
| 355 |
-
|
| 356 |
-
# Enhance query with conversation context for better retrieval
|
| 357 |
-
enhanced_query = f"{conversation_context}\n{user_query}"
|
| 358 |
-
|
| 359 |
-
# Retrieve relevant contexts
|
| 360 |
-
contexts = retrieve_context(enhanced_query, self.vector_store, top_k=5)
|
| 361 |
-
|
| 362 |
-
# Generate response
|
| 363 |
-
response = generate_response(user_query, contexts, self.model, self.tokenizer, language)
|
| 364 |
-
|
| 365 |
-
# Add response to conversation history
|
| 366 |
-
self.conversation_history.append({"role": "assistant", "content": response})
|
| 367 |
-
|
| 368 |
-
# Also return sources for transparency
|
| 369 |
-
sources = [ctx.get("source", "Unknown") for ctx in contexts]
|
| 370 |
-
unique_sources = list(set(sources))
|
| 371 |
-
|
| 372 |
-
return response, unique_sources, contexts
|
| 373 |
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
# === Overview ===
|
| 382 |
-
{
|
| 383 |
-
"query": "ما هي رؤية السعودية 2030؟",
|
| 384 |
-
"reference": "رؤية السعودية 2030 هي خطة استراتيجية ته��ف إلى تنويع الاقتصاد السعودي وتقليل الاعتماد على النفط مع تطوير قطاعات مختلفة مثل الصحة والتعليم والسياحة.",
|
| 385 |
-
"category": "overview",
|
| 386 |
-
"language": "arabic"
|
| 387 |
-
},
|
| 388 |
-
{
|
| 389 |
-
"query": "What is Saudi Vision 2030?",
|
| 390 |
-
"reference": "Saudi Vision 2030 is a strategic framework aiming to diversify Saudi Arabia's economy and reduce dependence on oil, while developing sectors like health, education, and tourism.",
|
| 391 |
-
"category": "overview",
|
| 392 |
-
"language": "english"
|
| 393 |
-
},
|
| 394 |
-
|
| 395 |
-
# === Economic Goals ===
|
| 396 |
-
{
|
| 397 |
-
"query": "ما هي الأهداف الاقتصادية لرؤية 2030؟",
|
| 398 |
-
"reference": "تشمل الأهداف الاقتصادية زيادة مساهمة القطاع الخاص إلى 65%، وزيادة الصادرات غير النفطية إلى 50% من الناتج المحلي غير النفطي، وخفض البطالة إلى 7%.",
|
| 399 |
-
"category": "economic",
|
| 400 |
-
"language": "arabic"
|
| 401 |
-
},
|
| 402 |
-
{
|
| 403 |
-
"query": "What are the economic goals of Vision 2030?",
|
| 404 |
-
"reference": "The economic goals of Vision 2030 include increasing private sector contribution from 40% to 65% of GDP, raising non-oil exports from 16% to 50%, reducing unemployment from 11.6% to 7%.",
|
| 405 |
-
"category": "economic",
|
| 406 |
-
"language": "english"
|
| 407 |
-
},
|
| 408 |
|
| 409 |
-
|
| 410 |
-
{
|
| 411 |
-
"query": "كيف تعزز رؤية 2030 الإرث الثقافي السعودي؟",
|
| 412 |
-
"reference": "تتضمن رؤية 2030 الحفاظ على الهوية الوطنية، تسجيل مواقع أثرية في اليونسكو، وتعزيز الفعاليات الثقافية.",
|
| 413 |
-
"category": "social",
|
| 414 |
-
"language": "arabic"
|
| 415 |
-
},
|
| 416 |
-
{
|
| 417 |
-
"query": "How does Vision 2030 aim to improve quality of life?",
|
| 418 |
-
"reference": "Vision 2030 plans to enhance quality of life by expanding sports facilities, promoting cultural activities, and boosting tourism and entertainment sectors.",
|
| 419 |
-
"category": "social",
|
| 420 |
-
"language": "english"
|
| 421 |
-
}
|
| 422 |
-
]
|
| 423 |
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
# Define paths for PDF files in the root directory
|
| 428 |
-
pdf_files = ["saudi_vision203.pdf", "saudi_vision2030_ar.pdf"]
|
| 429 |
-
|
| 430 |
-
# Print available files for debugging
|
| 431 |
-
print("Files in current directory:", os.listdir("."))
|
| 432 |
|
| 433 |
-
|
| 434 |
-
for pdf_file in pdf_files:
|
| 435 |
if not os.path.exists(pdf_file):
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
vector_store = create_vector_store(documents)
|
| 454 |
-
vector_store.save_local(vector_store_dir)
|
| 455 |
-
|
| 456 |
-
# Load model and tokenizer
|
| 457 |
-
model, tokenizer = load_model_and_tokenizer()
|
| 458 |
-
|
| 459 |
-
# Initialize assistant
|
| 460 |
-
assistant = Vision2030Assistant(model, tokenizer, vector_store)
|
| 461 |
-
|
| 462 |
-
return assistant
|
| 463 |
-
|
| 464 |
-
def evaluate_response(query, response, reference):
|
| 465 |
-
"""Evaluate a single response against a reference"""
|
| 466 |
-
# Calculate metrics
|
| 467 |
-
rouge = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=True)
|
| 468 |
-
rouge_scores = rouge.score(response, reference)
|
| 469 |
-
|
| 470 |
-
bleu_scores = calculate_bleu(response, reference)
|
| 471 |
-
meteor = calculate_meteor(response, reference)
|
| 472 |
-
word_metrics = calculate_f1_precision_recall(response, reference)
|
| 473 |
-
|
| 474 |
-
# Format results
|
| 475 |
-
evaluation_results = {
|
| 476 |
-
"ROUGE-1": f"{rouge_scores['rouge1'].fmeasure:.4f}",
|
| 477 |
-
"ROUGE-2": f"{rouge_scores['rouge2'].fmeasure:.4f}",
|
| 478 |
-
"ROUGE-L": f"{rouge_scores['rougeL'].fmeasure:.4f}",
|
| 479 |
-
"BLEU-1": f"{bleu_scores['bleu_1']:.4f}",
|
| 480 |
-
"BLEU-4": f"{bleu_scores['bleu_4']:.4f}",
|
| 481 |
-
"METEOR": f"{meteor:.4f}",
|
| 482 |
-
"Word Precision": f"{word_metrics['precision']:.4f}",
|
| 483 |
-
"Word Recall": f"{word_metrics['recall']:.4f}",
|
| 484 |
-
"Word F1": f"{word_metrics['f1']:.4f}"
|
| 485 |
-
}
|
| 486 |
|
| 487 |
-
return
|
| 488 |
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
response, sources, contexts = assistant.answer(query)
|
| 493 |
-
return response, sources, contexts
|
| 494 |
-
|
| 495 |
-
@spaces.GPU # Use GPU for evaluation
|
| 496 |
-
def run_evaluation_on_sample(assistant, sample_index=0):
|
| 497 |
-
"""Run evaluation on a selected sample from the evaluation dataset"""
|
| 498 |
-
if sample_index < 0 or sample_index >= len(comprehensive_evaluation_data):
|
| 499 |
-
return "Invalid sample index", "", "", {}
|
| 500 |
-
|
| 501 |
-
# Get the sample
|
| 502 |
-
sample = comprehensive_evaluation_data[sample_index]
|
| 503 |
-
query = sample["query"]
|
| 504 |
-
reference = sample["reference"]
|
| 505 |
-
category = sample["category"]
|
| 506 |
-
language = sample["language"]
|
| 507 |
|
| 508 |
-
|
| 509 |
-
|
| 510 |
-
|
| 511 |
|
| 512 |
-
#
|
| 513 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 514 |
|
| 515 |
-
return
|
| 516 |
|
| 517 |
-
def
|
| 518 |
-
"
|
| 519 |
-
|
| 520 |
-
|
| 521 |
-
if assistant is None:
|
| 522 |
-
with gr.Blocks(title="Vision 2030 Assistant - Initialization Error") as interface:
|
| 523 |
-
gr.Markdown("# Vision 2030 Assistant - Initialization Error")
|
| 524 |
-
gr.Markdown("There was an error initializing the assistant. Please check the logs for details.")
|
| 525 |
-
gr.Textbox(label="Status", value="System initialization failed")
|
| 526 |
-
return interface
|
| 527 |
-
|
| 528 |
-
sample_options = [f"{i+1}. {item['query'][:50]}..." for i, item in enumerate(comprehensive_evaluation_data)]
|
| 529 |
-
|
| 530 |
-
with gr.Blocks(title="Vision 2030 Assistant - Qualitative Evaluation") as interface:
|
| 531 |
-
gr.Markdown("# Vision 2030 Assistant - Qualitative Evaluation")
|
| 532 |
-
gr.Markdown("This interface allows you to evaluate the Vision 2030 Assistant on predefined samples or your own queries.")
|
| 533 |
-
|
| 534 |
-
with gr.Tab("Sample Evaluation"):
|
| 535 |
-
gr.Markdown("### Evaluate the assistant on predefined samples")
|
| 536 |
-
|
| 537 |
-
sample_dropdown = gr.Dropdown(
|
| 538 |
-
choices=sample_options,
|
| 539 |
-
label="Select a sample query",
|
| 540 |
-
value=sample_options[0] if sample_options else None
|
| 541 |
-
)
|
| 542 |
-
|
| 543 |
-
eval_button = gr.Button("Evaluate Sample")
|
| 544 |
-
|
| 545 |
-
with gr.Row():
|
| 546 |
-
with gr.Column():
|
| 547 |
-
sample_query = gr.Textbox(label="Query")
|
| 548 |
-
sample_category = gr.Textbox(label="Category")
|
| 549 |
-
sample_language = gr.Textbox(label="Language")
|
| 550 |
-
|
| 551 |
-
with gr.Column():
|
| 552 |
-
sample_response = gr.Textbox(label="Assistant Response")
|
| 553 |
-
sample_reference = gr.Textbox(label="Reference Answer")
|
| 554 |
-
sample_sources = gr.Textbox(label="Sources Used")
|
| 555 |
-
|
| 556 |
-
with gr.Row():
|
| 557 |
-
metrics_display = gr.JSON(label="Evaluation Metrics")
|
| 558 |
-
|
| 559 |
-
with gr.Tab("Custom Evaluation"):
|
| 560 |
-
gr.Markdown("### Evaluate the assistant on your own query")
|
| 561 |
-
|
| 562 |
-
custom_query = gr.Textbox(
|
| 563 |
-
lines=3,
|
| 564 |
-
placeholder="Enter your question about Saudi Vision 2030...",
|
| 565 |
-
label="Your Query"
|
| 566 |
-
)
|
| 567 |
-
|
| 568 |
-
custom_reference = gr.Textbox(
|
| 569 |
-
lines=3,
|
| 570 |
-
placeholder="Enter a reference answer (optional)...",
|
| 571 |
-
label="Reference Answer (Optional)"
|
| 572 |
-
)
|
| 573 |
-
|
| 574 |
-
custom_eval_button = gr.Button("Get Response and Evaluate")
|
| 575 |
-
|
| 576 |
-
custom_response = gr.Textbox(label="Assistant Response")
|
| 577 |
-
custom_sources = gr.Textbox(label="Sources Used")
|
| 578 |
-
|
| 579 |
-
custom_metrics = gr.JSON(
|
| 580 |
-
label="Evaluation Metrics (if reference provided)",
|
| 581 |
-
visible=True
|
| 582 |
-
)
|
| 583 |
|
| 584 |
-
with gr.Tab("
|
| 585 |
-
gr.
|
| 586 |
-
|
| 587 |
-
chatbot = gr.Chatbot(label="Conversation")
|
| 588 |
|
| 589 |
-
|
| 590 |
-
placeholder="Ask about Saudi Vision 2030...",
|
| 591 |
-
label="Your message"
|
| 592 |
-
)
|
| 593 |
-
|
| 594 |
-
with gr.Row():
|
| 595 |
-
conv_button = gr.Button("Send")
|
| 596 |
-
reset_button = gr.Button("Reset Conversation")
|
| 597 |
-
|
| 598 |
-
conv_sources = gr.Textbox(label="Sources Used")
|
| 599 |
|
| 600 |
-
|
| 601 |
-
|
| 602 |
-
|
| 603 |
-
return "", "", "", "", "", "", ""
|
| 604 |
|
| 605 |
-
|
| 606 |
-
try:
|
| 607 |
-
index = int(selection.split(".")[0]) - 1
|
| 608 |
-
query, response, reference, metrics, sources, category, language = run_evaluation_on_sample(assistant, index)
|
| 609 |
-
sources_str = ", ".join(sources)
|
| 610 |
-
return query, response, reference, metrics, sources_str, category, language
|
| 611 |
-
except Exception as e:
|
| 612 |
-
print(f"Error in handle_sample_selection: {e}")
|
| 613 |
-
import traceback
|
| 614 |
-
traceback.print_exc()
|
| 615 |
-
return f"Error processing selection: {e}", "", "", {}, "", "", ""
|
| 616 |
-
|
| 617 |
-
eval_button.click(
|
| 618 |
-
handle_sample_selection,
|
| 619 |
-
inputs=[sample_dropdown],
|
| 620 |
-
outputs=[sample_query, sample_response, sample_reference, metrics_display,
|
| 621 |
-
sample_sources, sample_category, sample_language]
|
| 622 |
-
)
|
| 623 |
-
|
| 624 |
-
sample_dropdown.change(
|
| 625 |
-
handle_sample_selection,
|
| 626 |
-
inputs=[sample_dropdown],
|
| 627 |
-
outputs=[sample_query, sample_response, sample_reference, metrics_display,
|
| 628 |
-
sample_sources, sample_category, sample_language]
|
| 629 |
-
)
|
| 630 |
|
| 631 |
-
|
| 632 |
-
|
| 633 |
-
|
| 634 |
-
if not query:
|
| 635 |
-
return "Please enter a query", "", {}
|
| 636 |
-
|
| 637 |
-
# Reset conversation to ensure clean state
|
| 638 |
-
assistant.reset_conversation()
|
| 639 |
-
|
| 640 |
-
# Get response
|
| 641 |
-
response, sources, _ = assistant.answer(query)
|
| 642 |
-
sources_str = ", ".join(sources)
|
| 643 |
-
|
| 644 |
-
# Evaluate if reference is provided
|
| 645 |
-
metrics = {}
|
| 646 |
-
if reference:
|
| 647 |
-
metrics = evaluate_response(query, response, reference)
|
| 648 |
-
|
| 649 |
-
return response, sources_str, metrics
|
| 650 |
-
|
| 651 |
-
custom_eval_button.click(
|
| 652 |
-
handle_custom_evaluation,
|
| 653 |
-
inputs=[custom_query, custom_reference],
|
| 654 |
-
outputs=[custom_response, custom_sources, custom_metrics]
|
| 655 |
-
)
|
| 656 |
-
|
| 657 |
-
# Conversation mode event handlers
|
| 658 |
-
@spaces.GPU # Use GPU for conversation handling
|
| 659 |
-
def handle_conversation(message, history):
|
| 660 |
-
if not message:
|
| 661 |
-
return history, "", ""
|
| 662 |
-
|
| 663 |
-
# Get response
|
| 664 |
-
response, sources, _ = assistant.answer(message)
|
| 665 |
-
sources_str = ", ".join(sources)
|
| 666 |
-
|
| 667 |
-
# Update history
|
| 668 |
-
history = history + [[message, response]]
|
| 669 |
|
| 670 |
-
|
| 671 |
-
|
| 672 |
-
def reset_conv():
|
| 673 |
-
result = assistant.reset_conversation()
|
| 674 |
-
return [], result, ""
|
| 675 |
-
|
| 676 |
-
conv_button.click(
|
| 677 |
-
handle_conversation,
|
| 678 |
-
inputs=[conv_input, chatbot],
|
| 679 |
-
outputs=[chatbot, conv_input, conv_sources]
|
| 680 |
-
)
|
| 681 |
-
|
| 682 |
-
reset_button.click(
|
| 683 |
-
reset_conv,
|
| 684 |
-
inputs=[],
|
| 685 |
-
outputs=[chatbot, conv_input, conv_sources]
|
| 686 |
-
)
|
| 687 |
-
|
| 688 |
-
return interface
|
| 689 |
-
|
| 690 |
-
# Main function to run in Hugging Face Space
|
| 691 |
-
def main():
|
| 692 |
-
# Start with a debugging report
|
| 693 |
-
print("=" * 50)
|
| 694 |
-
print("SYSTEM INITIALIZATION")
|
| 695 |
-
print("=" * 50)
|
| 696 |
-
print("Current directory:", os.getcwd())
|
| 697 |
-
print("Files in directory:", os.listdir("."))
|
| 698 |
-
print("=" * 50)
|
| 699 |
|
| 700 |
-
|
| 701 |
-
try:
|
| 702 |
-
# First check if PDF files exist
|
| 703 |
-
pdf_files = ["saudi_vision203.pdf", "saudi_vision2030_ar.pdf"]
|
| 704 |
-
for pdf_file in pdf_files:
|
| 705 |
-
if not os.path.exists(pdf_file):
|
| 706 |
-
print(f"Warning: {pdf_file} not found!")
|
| 707 |
-
|
| 708 |
-
# Process with initialization
|
| 709 |
-
print("Starting system initialization...")
|
| 710 |
-
assistant = initialize_system()
|
| 711 |
-
|
| 712 |
-
print("Creating interface...")
|
| 713 |
-
interface = qualitative_evaluation_interface(assistant)
|
| 714 |
-
|
| 715 |
-
print("Launching interface...")
|
| 716 |
-
interface.launch()
|
| 717 |
-
except Exception as e:
|
| 718 |
-
print(f"Error during initialization: {e}")
|
| 719 |
-
import traceback
|
| 720 |
-
traceback.print_exc()
|
| 721 |
-
|
| 722 |
-
# Create a simple error interface
|
| 723 |
-
with gr.Blocks(title="Vision 2030 Assistant - Error") as debug_interface:
|
| 724 |
-
gr.Markdown("# Vision 2030 Assistant - Initialization Error")
|
| 725 |
-
gr.Markdown("There was an error initializing the assistant.")
|
| 726 |
-
|
| 727 |
-
# Display error details
|
| 728 |
-
gr.Textbox(
|
| 729 |
-
value=f"Error: {str(e)}",
|
| 730 |
-
label="Error Details",
|
| 731 |
-
lines=5
|
| 732 |
-
)
|
| 733 |
-
|
| 734 |
-
# Show file system status
|
| 735 |
-
files_list = "\n".join(os.listdir("."))
|
| 736 |
-
gr.Textbox(
|
| 737 |
-
value=files_list,
|
| 738 |
-
label="Files in Directory",
|
| 739 |
-
lines=10
|
| 740 |
-
)
|
| 741 |
-
|
| 742 |
-
# Add a button to check PDFs
|
| 743 |
-
def check_pdfs():
|
| 744 |
-
result = []
|
| 745 |
-
for pdf_file in ["saudi_vision203.pdf", "saudi_vision2030_ar.pdf"]:
|
| 746 |
-
if os.path.exists(pdf_file):
|
| 747 |
-
size = os.path.getsize(pdf_file) / (1024 * 1024) # Size in MB
|
| 748 |
-
result.append(f"{pdf_file}: Found ({size:.2f} MB)")
|
| 749 |
-
else:
|
| 750 |
-
result.append(f"{pdf_file}: Not found")
|
| 751 |
-
return "\n".join(result)
|
| 752 |
-
|
| 753 |
-
check_btn = gr.Button("Check PDF Files")
|
| 754 |
-
pdf_status = gr.Textbox(label="PDF Status", lines=3)
|
| 755 |
-
check_btn.click(check_pdfs, inputs=[], outputs=[pdf_status])
|
| 756 |
-
|
| 757 |
-
debug_interface.launch()
|
| 758 |
|
| 759 |
if __name__ == "__main__":
|
| 760 |
main()
|
|
|
|
| 1 |
import os
|
| 2 |
+
import sys
|
| 3 |
+
import traceback
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
import gradio as gr
|
| 5 |
|
| 6 |
+
def import_with_error_tracking(module_name):
|
| 7 |
+
"""Try to import a module and return detailed error info if it fails"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
try:
|
| 9 |
+
module = __import__(module_name)
|
| 10 |
+
return True, f"Successfully imported {module_name}"
|
| 11 |
+
except ImportError as e:
|
| 12 |
+
return False, f"Failed to import {module_name}: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
except Exception as e:
|
| 14 |
+
return False, f"Error importing {module_name}: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
+
def test_imports():
|
| 17 |
+
# Create a report of all import attempts
|
| 18 |
+
results = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
+
# Core libraries
|
| 21 |
+
for lib in ["torch", "numpy", "pandas", "tqdm", "PyPDF2", "transformers",
|
| 22 |
+
"sentence_transformers", "langchain", "langchain_community",
|
| 23 |
+
"arabic_reshaper", "bidi", "rouge_score", "sacrebleu", "spaces"]:
|
| 24 |
+
success, message = import_with_error_tracking(lib)
|
| 25 |
+
results.append(f"{'✓' if success else '✗'} {message}")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
+
# Check if specific model is available
|
| 28 |
try:
|
| 29 |
+
from transformers import AutoTokenizer
|
| 30 |
+
tokenizer = AutoTokenizer.from_pretrained("ALLaM-AI/ALLaM-7B-Instruct-preview", trust_remote_code=True)
|
| 31 |
+
results.append("✓ Model tokenizer accessible")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
except Exception as e:
|
| 33 |
+
results.append(f"✗ Model access error: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
+
# Test vector store
|
| 36 |
+
try:
|
| 37 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
| 38 |
+
from langchain_community.vectorstores import FAISS
|
| 39 |
+
results.append("✓ Vector store components accessible")
|
| 40 |
+
except Exception as e:
|
| 41 |
+
results.append(f"✗ Vector store error: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
+
return "\n".join(results)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
+
def check_pdfs():
|
| 46 |
+
"""Check if PDF files are readable"""
|
| 47 |
+
results = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
+
for pdf_file in ["saudi_vision203.pdf", "saudi_vision2030_ar.pdf"]:
|
|
|
|
| 50 |
if not os.path.exists(pdf_file):
|
| 51 |
+
results.append(f"{pdf_file}: Not found")
|
| 52 |
+
continue
|
| 53 |
+
|
| 54 |
+
size = os.path.getsize(pdf_file) / (1024 * 1024) # Size in MB
|
| 55 |
+
results.append(f"{pdf_file}: Found ({size:.2f} MB)")
|
| 56 |
+
|
| 57 |
+
# Try to open and read the file
|
| 58 |
+
try:
|
| 59 |
+
import PyPDF2
|
| 60 |
+
with open(pdf_file, 'rb') as f:
|
| 61 |
+
reader = PyPDF2.PdfReader(f)
|
| 62 |
+
num_pages = len(reader.pages)
|
| 63 |
+
text_sample = reader.pages[0].extract_text()[:100] + "..."
|
| 64 |
+
results.append(f"- Pages: {num_pages}")
|
| 65 |
+
results.append(f"- Sample text: {text_sample}")
|
| 66 |
+
except Exception as e:
|
| 67 |
+
results.append(f"- Error reading file: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
+
return "\n".join(results)
|
| 70 |
|
| 71 |
+
def check_environment():
|
| 72 |
+
"""Get information about the Python environment"""
|
| 73 |
+
results = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
+
results.append(f"Python version: {sys.version}")
|
| 76 |
+
results.append(f"Python executable: {sys.executable}")
|
| 77 |
+
results.append(f"Working directory: {os.getcwd()}")
|
| 78 |
|
| 79 |
+
# List all installed packages
|
| 80 |
+
try:
|
| 81 |
+
import pkg_resources
|
| 82 |
+
installed_packages = [f"{pkg.key}=={pkg.version}" for pkg in pkg_resources.working_set]
|
| 83 |
+
results.append(f"Installed packages ({len(installed_packages)}):")
|
| 84 |
+
results.append("\n".join(installed_packages))
|
| 85 |
+
except:
|
| 86 |
+
results.append("Could not list installed packages")
|
| 87 |
|
| 88 |
+
return "\n".join(results)
|
| 89 |
|
| 90 |
+
def main():
|
| 91 |
+
with gr.Blocks(title="Vision 2030 Assistant - Debug Mode") as interface:
|
| 92 |
+
gr.Markdown("# Vision 2030 Assistant - Debug Mode")
|
| 93 |
+
gr.Markdown("This interface helps identify import and initialization issues.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
+
with gr.Tab("Import Testing"):
|
| 96 |
+
test_btn = gr.Button("Test Imports")
|
| 97 |
+
import_results = gr.Textbox(label="Import Test Results", lines=20)
|
|
|
|
| 98 |
|
| 99 |
+
test_btn.click(test_imports, inputs=[], outputs=[import_results])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
|
| 101 |
+
with gr.Tab("PDF Testing"):
|
| 102 |
+
pdf_btn = gr.Button("Test PDFs")
|
| 103 |
+
pdf_results = gr.Textbox(label="PDF Test Results", lines=20)
|
|
|
|
| 104 |
|
| 105 |
+
pdf_btn.click(check_pdfs, inputs=[], outputs=[pdf_results])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
+
with gr.Tab("Environment"):
|
| 108 |
+
env_btn = gr.Button("Check Environment")
|
| 109 |
+
env_results = gr.Textbox(label="Environment Information", lines=30)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
|
| 111 |
+
env_btn.click(check_environment, inputs=[], outputs=[env_results])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
|
| 113 |
+
interface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
if __name__ == "__main__":
|
| 116 |
main()
|