Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
import time
|
3 |
import logging
|
@@ -6,16 +7,14 @@ import re
|
|
6 |
from datetime import datetime
|
7 |
import numpy as np
|
8 |
import pandas as pd
|
9 |
-
import matplotlib.pyplot as plt
|
10 |
from sentence_transformers import SentenceTransformer, util
|
11 |
import faiss
|
12 |
import torch
|
13 |
-
import spaces
|
14 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
15 |
import PyPDF2
|
16 |
import io
|
17 |
|
18 |
-
#
|
19 |
logging.basicConfig(
|
20 |
level=logging.INFO,
|
21 |
format='%(asctime)s - %(levelname)s - %(message)s',
|
@@ -27,36 +26,23 @@ logger = logging.getLogger('Vision2030Assistant')
|
|
27 |
has_gpu = torch.cuda.is_available()
|
28 |
logger.info(f"GPU available: {has_gpu}")
|
29 |
|
|
|
30 |
class Vision2030Assistant:
|
31 |
def __init__(self):
|
32 |
-
"""Initialize the
|
33 |
logger.info("Initializing Vision 2030 Assistant...")
|
34 |
-
|
35 |
-
# Load models with error handling
|
36 |
self.load_embedding_models()
|
37 |
self.load_language_model()
|
38 |
-
|
39 |
-
# Initialize knowledge base and indices
|
40 |
self._create_knowledge_base()
|
41 |
self._create_indices()
|
42 |
-
|
43 |
-
# Sample evaluation data
|
44 |
self._create_sample_eval_data()
|
45 |
-
|
46 |
-
# Metrics storage
|
47 |
self.metrics = {"response_times": [], "user_ratings": [], "factual_accuracy": []}
|
48 |
-
|
49 |
-
#
|
50 |
-
self.session_history = {}
|
51 |
-
|
52 |
-
# PDF content flag
|
53 |
-
self.has_pdf_content = False
|
54 |
-
|
55 |
logger.info("Assistant initialized successfully")
|
56 |
|
57 |
-
@spaces.GPU
|
58 |
def load_embedding_models(self):
|
59 |
-
"""Load embedding models with fallback"""
|
60 |
try:
|
61 |
self.arabic_embedder = SentenceTransformer('CAMeL-Lab/bert-base-arabic-camelbert-ca')
|
62 |
self.english_embedder = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
@@ -69,37 +55,37 @@ class Vision2030Assistant:
|
|
69 |
self._fallback_embedding()
|
70 |
|
71 |
def _fallback_embedding(self):
|
72 |
-
"""Fallback
|
73 |
logger.warning("Using fallback embedding method")
|
74 |
-
def simple_embed(text):
|
75 |
-
import hashlib
|
76 |
-
hash_obj = hashlib.md5(text.encode())
|
77 |
-
np.random.seed(int(hash_obj.hexdigest(), 16) % 2**32)
|
78 |
-
return np.random.randn(384).astype(np.float32)
|
79 |
-
|
80 |
class SimpleEmbedder:
|
81 |
def encode(self, text):
|
82 |
-
|
83 |
-
|
|
|
|
|
84 |
self.arabic_embedder = SimpleEmbedder()
|
85 |
self.english_embedder = SimpleEmbedder()
|
86 |
|
87 |
-
@spaces.GPU
|
88 |
def load_language_model(self):
|
89 |
-
"""Load language model for
|
90 |
try:
|
91 |
self.tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
|
92 |
self.model = AutoModelForCausalLM.from_pretrained("distilgpt2")
|
93 |
if has_gpu:
|
94 |
self.model = self.model.to('cuda')
|
95 |
-
self.generator = pipeline(
|
|
|
|
|
|
|
|
|
|
|
96 |
logger.info("Language model loaded successfully")
|
97 |
except Exception as e:
|
98 |
logger.error(f"Failed to load language model: {e}")
|
99 |
self.generator = None
|
100 |
|
101 |
def _create_knowledge_base(self):
|
102 |
-
"""
|
103 |
self.english_texts = [
|
104 |
"Vision 2030 is Saudi Arabia's strategic framework to reduce dependence on oil, diversify the economy, and develop public sectors.",
|
105 |
"The key pillars of Vision 2030 are a vibrant society, a thriving economy, and an ambitious nation.",
|
@@ -113,11 +99,10 @@ class Vision2030Assistant:
|
|
113 |
self.pdf_english_texts = []
|
114 |
self.pdf_arabic_texts = []
|
115 |
|
116 |
-
@spaces.GPU
|
117 |
def _create_indices(self):
|
118 |
-
"""Create
|
119 |
try:
|
120 |
-
# English index
|
121 |
english_vectors = [self.english_embedder.encode(text) for text in self.english_texts]
|
122 |
dim = len(english_vectors[0])
|
123 |
nlist = max(1, len(english_vectors) // 10)
|
@@ -125,44 +110,50 @@ class Vision2030Assistant:
|
|
125 |
self.english_index = faiss.IndexIVFFlat(quantizer, dim, nlist)
|
126 |
self.english_index.train(np.array(english_vectors))
|
127 |
self.english_index.add(np.array(english_vectors))
|
128 |
-
|
129 |
# Arabic index
|
130 |
arabic_vectors = [self.arabic_embedder.encode(text) for text in self.arabic_texts]
|
131 |
self.arabic_index = faiss.IndexIVFFlat(quantizer, dim, nlist)
|
132 |
self.arabic_index.train(np.array(arabic_vectors))
|
133 |
self.arabic_index.add(np.array(arabic_vectors))
|
134 |
-
|
135 |
logger.info("FAISS indices created successfully")
|
136 |
except Exception as e:
|
137 |
logger.error(f"Error creating indices: {e}")
|
138 |
|
139 |
def _create_sample_eval_data(self):
|
140 |
-
"""
|
141 |
self.eval_data = [
|
142 |
-
{"question": "What are the key pillars of Vision 2030?",
|
143 |
-
|
|
|
|
|
|
|
|
|
144 |
]
|
145 |
|
146 |
-
@spaces.GPU
|
147 |
def retrieve_context(self, query, lang, session_id):
|
148 |
-
"""Retrieve context
|
149 |
try:
|
150 |
-
# Incorporate session history
|
151 |
history = self.session_history.get(session_id, [])
|
152 |
-
history_context = " ".join([f"Q: {q} A: {a}" for q, a in history[-2:]])
|
153 |
-
|
154 |
-
# Embed query
|
155 |
embedder = self.arabic_embedder if lang == "ar" else self.english_embedder
|
156 |
query_vec = embedder.encode(query)
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
D, I = index.search(np.array([query_vec]), k=2)
|
167 |
context = "\n".join([texts[i] for i in I[0] if i >= 0]) + f"\nHistory: {history_context}"
|
168 |
return context if context.strip() else "No relevant information found."
|
@@ -170,9 +161,8 @@ class Vision2030Assistant:
|
|
170 |
logger.error(f"Retrieval error: {e}")
|
171 |
return "Error retrieving context."
|
172 |
|
173 |
-
@spaces.GPU
|
174 |
def generate_response(self, query, session_id):
|
175 |
-
"""Generate
|
176 |
if not query.strip():
|
177 |
return "Please enter a valid question."
|
178 |
|
@@ -188,9 +178,8 @@ class Vision2030Assistant:
|
|
188 |
response = self.generator(prompt, max_length=150, num_return_sequences=1, do_sample=True, temperature=0.7)
|
189 |
reply = response[0]['generated_text'].split("Answer:")[-1].strip()
|
190 |
else:
|
191 |
-
reply = context
|
192 |
|
193 |
-
# Update session history
|
194 |
self.session_history.setdefault(session_id, []).append((query, reply))
|
195 |
self.metrics["response_times"].append(time.time() - start_time)
|
196 |
return reply
|
@@ -199,9 +188,9 @@ class Vision2030Assistant:
|
|
199 |
return "Sorry, an error occurred. Please try again."
|
200 |
|
201 |
def evaluate_factual_accuracy(self, response, reference):
|
202 |
-
"""Evaluate using semantic similarity"""
|
203 |
try:
|
204 |
-
embedder = self.english_embedder # Assuming reference is in English
|
205 |
response_vec = embedder.encode(response)
|
206 |
reference_vec = embedder.encode(reference)
|
207 |
similarity = util.cos_sim(response_vec, reference_vec).item()
|
@@ -210,9 +199,8 @@ class Vision2030Assistant:
|
|
210 |
logger.error(f"Evaluation error: {e}")
|
211 |
return 0.0
|
212 |
|
213 |
-
@spaces.GPU
|
214 |
def process_pdf(self, file):
|
215 |
-
"""Process PDF
|
216 |
if not file:
|
217 |
return "Please upload a PDF file."
|
218 |
|
@@ -222,56 +210,61 @@ class Vision2030Assistant:
|
|
222 |
if not text.strip():
|
223 |
return "No extractable text found in PDF."
|
224 |
|
225 |
-
#
|
226 |
chunks = [text[i:i+300] for i in range(0, len(text), 300)]
|
227 |
self.pdf_english_texts = [c for c in chunks if not any('\u0600' <= char <= '\u06FF' for char in c)]
|
228 |
self.pdf_arabic_texts = [c for c in chunks if any('\u0600' <= char <= '\u06FF' for char in c)]
|
229 |
-
|
230 |
-
#
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
|
|
|
|
247 |
self.has_pdf_content = True
|
248 |
return f"PDF processed: {len(self.pdf_english_texts)} English, {len(self.pdf_arabic_texts)} Arabic chunks."
|
249 |
except Exception as e:
|
250 |
logger.error(f"PDF processing error: {e}")
|
251 |
return f"Error processing PDF: {e}"
|
252 |
|
253 |
-
# Gradio
|
254 |
def create_interface():
|
|
|
255 |
assistant = Vision2030Assistant()
|
256 |
-
|
257 |
def chat(query, history, session_id):
|
258 |
reply = assistant.generate_response(query, session_id)
|
259 |
history.append((query, reply))
|
260 |
return history, ""
|
261 |
-
|
262 |
with gr.Blocks() as demo:
|
263 |
gr.Markdown("# Vision 2030 Virtual Assistant")
|
264 |
-
session_id = gr.State(value="user1") #
|
265 |
chatbot = gr.Chatbot()
|
266 |
msg = gr.Textbox(label="Ask a question")
|
267 |
submit = gr.Button("Submit")
|
268 |
pdf_upload = gr.File(label="Upload PDF", type="binary")
|
269 |
upload_status = gr.Textbox(label="Upload Status")
|
270 |
-
|
271 |
submit.click(chat, [msg, chatbot, session_id], [chatbot, msg])
|
272 |
pdf_upload.upload(assistant.process_pdf, pdf_upload, upload_status)
|
273 |
-
|
274 |
return demo
|
275 |
|
276 |
-
|
277 |
-
|
|
|
|
|
|
1 |
+
# Import necessary libraries
|
2 |
import gradio as gr
|
3 |
import time
|
4 |
import logging
|
|
|
7 |
from datetime import datetime
|
8 |
import numpy as np
|
9 |
import pandas as pd
|
|
|
10 |
from sentence_transformers import SentenceTransformer, util
|
11 |
import faiss
|
12 |
import torch
|
|
|
13 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
14 |
import PyPDF2
|
15 |
import io
|
16 |
|
17 |
+
# Set up logging
|
18 |
logging.basicConfig(
|
19 |
level=logging.INFO,
|
20 |
format='%(asctime)s - %(levelname)s - %(message)s',
|
|
|
26 |
has_gpu = torch.cuda.is_available()
|
27 |
logger.info(f"GPU available: {has_gpu}")
|
28 |
|
29 |
+
# Define the Vision2030Assistant class
|
30 |
class Vision2030Assistant:
|
31 |
def __init__(self):
|
32 |
+
"""Initialize the Vision 2030 Assistant with models, knowledge base, and indices."""
|
33 |
logger.info("Initializing Vision 2030 Assistant...")
|
|
|
|
|
34 |
self.load_embedding_models()
|
35 |
self.load_language_model()
|
|
|
|
|
36 |
self._create_knowledge_base()
|
37 |
self._create_indices()
|
|
|
|
|
38 |
self._create_sample_eval_data()
|
|
|
|
|
39 |
self.metrics = {"response_times": [], "user_ratings": [], "factual_accuracy": []}
|
40 |
+
self.session_history = {} # Dictionary to store session history
|
41 |
+
self.has_pdf_content = False # Flag to indicate if PDF content is available
|
|
|
|
|
|
|
|
|
|
|
42 |
logger.info("Assistant initialized successfully")
|
43 |
|
|
|
44 |
def load_embedding_models(self):
|
45 |
+
"""Load Arabic and English embedding models with fallback mechanism."""
|
46 |
try:
|
47 |
self.arabic_embedder = SentenceTransformer('CAMeL-Lab/bert-base-arabic-camelbert-ca')
|
48 |
self.english_embedder = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
|
|
55 |
self._fallback_embedding()
|
56 |
|
57 |
def _fallback_embedding(self):
|
58 |
+
"""Fallback method for embedding models using a simple random vector approach."""
|
59 |
logger.warning("Using fallback embedding method")
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
class SimpleEmbedder:
|
61 |
def encode(self, text):
|
62 |
+
import hashlib
|
63 |
+
hash_obj = hashlib.md5(text.encode())
|
64 |
+
np.random.seed(int(hash_obj.hexdigest(), 16) % 2**32)
|
65 |
+
return np.random.randn(384).astype(np.float32)
|
66 |
self.arabic_embedder = SimpleEmbedder()
|
67 |
self.english_embedder = SimpleEmbedder()
|
68 |
|
|
|
69 |
def load_language_model(self):
|
70 |
+
"""Load the DistilGPT-2 language model for response generation."""
|
71 |
try:
|
72 |
self.tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
|
73 |
self.model = AutoModelForCausalLM.from_pretrained("distilgpt2")
|
74 |
if has_gpu:
|
75 |
self.model = self.model.to('cuda')
|
76 |
+
self.generator = pipeline(
|
77 |
+
'text-generation',
|
78 |
+
model=self.model,
|
79 |
+
tokenizer=self.tokenizer,
|
80 |
+
device=0 if has_gpu else -1
|
81 |
+
)
|
82 |
logger.info("Language model loaded successfully")
|
83 |
except Exception as e:
|
84 |
logger.error(f"Failed to load language model: {e}")
|
85 |
self.generator = None
|
86 |
|
87 |
def _create_knowledge_base(self):
|
88 |
+
"""Initialize the knowledge base with basic Vision 2030 information."""
|
89 |
self.english_texts = [
|
90 |
"Vision 2030 is Saudi Arabia's strategic framework to reduce dependence on oil, diversify the economy, and develop public sectors.",
|
91 |
"The key pillars of Vision 2030 are a vibrant society, a thriving economy, and an ambitious nation.",
|
|
|
99 |
self.pdf_english_texts = []
|
100 |
self.pdf_arabic_texts = []
|
101 |
|
|
|
102 |
def _create_indices(self):
|
103 |
+
"""Create FAISS indices for the initial knowledge base."""
|
104 |
try:
|
105 |
+
# English index
|
106 |
english_vectors = [self.english_embedder.encode(text) for text in self.english_texts]
|
107 |
dim = len(english_vectors[0])
|
108 |
nlist = max(1, len(english_vectors) // 10)
|
|
|
110 |
self.english_index = faiss.IndexIVFFlat(quantizer, dim, nlist)
|
111 |
self.english_index.train(np.array(english_vectors))
|
112 |
self.english_index.add(np.array(english_vectors))
|
113 |
+
|
114 |
# Arabic index
|
115 |
arabic_vectors = [self.arabic_embedder.encode(text) for text in self.arabic_texts]
|
116 |
self.arabic_index = faiss.IndexIVFFlat(quantizer, dim, nlist)
|
117 |
self.arabic_index.train(np.array(arabic_vectors))
|
118 |
self.arabic_index.add(np.array(arabic_vectors))
|
|
|
119 |
logger.info("FAISS indices created successfully")
|
120 |
except Exception as e:
|
121 |
logger.error(f"Error creating indices: {e}")
|
122 |
|
123 |
def _create_sample_eval_data(self):
|
124 |
+
"""Create sample evaluation data for testing factual accuracy."""
|
125 |
self.eval_data = [
|
126 |
+
{"question": "What are the key pillars of Vision 2030?",
|
127 |
+
"lang": "en",
|
128 |
+
"reference": "The key pillars of Vision 2030 are a vibrant society, a thriving economy, and an ambitious nation."},
|
129 |
+
{"question": "ما هي الركائز الرئيسية لرؤية 2030؟",
|
130 |
+
"lang": "ar",
|
131 |
+
"reference": "الركائز الرئيسية لرؤية 2030 هي مجتمع حيوي، واقتصاد مزدهر، ووطن طموح."}
|
132 |
]
|
133 |
|
|
|
134 |
def retrieve_context(self, query, lang, session_id):
|
135 |
+
"""Retrieve relevant context based on the query and session history."""
|
136 |
try:
|
|
|
137 |
history = self.session_history.get(session_id, [])
|
138 |
+
history_context = " ".join([f"Q: {q} A: {a}" for q, a in history[-2:]])
|
|
|
|
|
139 |
embedder = self.arabic_embedder if lang == "ar" else self.english_embedder
|
140 |
query_vec = embedder.encode(query)
|
141 |
+
|
142 |
+
if lang == "ar":
|
143 |
+
if self.has_pdf_content and self.pdf_arabic_texts:
|
144 |
+
index = self.pdf_arabic_index
|
145 |
+
texts = self.pdf_arabic_texts
|
146 |
+
else:
|
147 |
+
index = self.arabic_index
|
148 |
+
texts = self.arabic_texts
|
149 |
+
else:
|
150 |
+
if self.has_pdf_content and self.pdf_english_texts:
|
151 |
+
index = self.pdf_english_index
|
152 |
+
texts = self.pdf_english_texts
|
153 |
+
else:
|
154 |
+
index = self.english_index
|
155 |
+
texts = self.english_texts
|
156 |
+
|
157 |
D, I = index.search(np.array([query_vec]), k=2)
|
158 |
context = "\n".join([texts[i] for i in I[0] if i >= 0]) + f"\nHistory: {history_context}"
|
159 |
return context if context.strip() else "No relevant information found."
|
|
|
161 |
logger.error(f"Retrieval error: {e}")
|
162 |
return "Error retrieving context."
|
163 |
|
|
|
164 |
def generate_response(self, query, session_id):
|
165 |
+
"""Generate a response to the user's query using context and session history."""
|
166 |
if not query.strip():
|
167 |
return "Please enter a valid question."
|
168 |
|
|
|
178 |
response = self.generator(prompt, max_length=150, num_return_sequences=1, do_sample=True, temperature=0.7)
|
179 |
reply = response[0]['generated_text'].split("Answer:")[-1].strip()
|
180 |
else:
|
181 |
+
reply = context
|
182 |
|
|
|
183 |
self.session_history.setdefault(session_id, []).append((query, reply))
|
184 |
self.metrics["response_times"].append(time.time() - start_time)
|
185 |
return reply
|
|
|
188 |
return "Sorry, an error occurred. Please try again."
|
189 |
|
190 |
def evaluate_factual_accuracy(self, response, reference):
|
191 |
+
"""Evaluate the factual accuracy of a response using semantic similarity."""
|
192 |
try:
|
193 |
+
embedder = self.english_embedder # Assuming reference is in English for simplicity
|
194 |
response_vec = embedder.encode(response)
|
195 |
reference_vec = embedder.encode(reference)
|
196 |
similarity = util.cos_sim(response_vec, reference_vec).item()
|
|
|
199 |
logger.error(f"Evaluation error: {e}")
|
200 |
return 0.0
|
201 |
|
|
|
202 |
def process_pdf(self, file):
|
203 |
+
"""Process an uploaded PDF file and update the knowledge base."""
|
204 |
if not file:
|
205 |
return "Please upload a PDF file."
|
206 |
|
|
|
210 |
if not text.strip():
|
211 |
return "No extractable text found in PDF."
|
212 |
|
213 |
+
# Split text into chunks
|
214 |
chunks = [text[i:i+300] for i in range(0, len(text), 300)]
|
215 |
self.pdf_english_texts = [c for c in chunks if not any('\u0600' <= char <= '\u06FF' for char in c)]
|
216 |
self.pdf_arabic_texts = [c for c in chunks if any('\u0600' <= char <= '\u06FF' for char in c)]
|
217 |
+
|
218 |
+
# Create indices for PDF content
|
219 |
+
if self.pdf_english_texts:
|
220 |
+
english_vectors = [self.english_embedder.encode(text) for text in self.pdf_english_texts]
|
221 |
+
dim = len(english_vectors[0])
|
222 |
+
nlist = max(1, len(english_vectors) // 10)
|
223 |
+
quantizer = faiss.IndexFlatL2(dim)
|
224 |
+
self.pdf_english_index = faiss.IndexIVFFlat(quantizer, dim, nlist)
|
225 |
+
self.pdf_english_index.train(np.array(english_vectors))
|
226 |
+
self.pdf_english_index.add(np.array(english_vectors))
|
227 |
+
|
228 |
+
if self.pdf_arabic_texts:
|
229 |
+
arabic_vectors = [self.arabic_embedder.encode(text) for text in self.pdf_arabic_texts]
|
230 |
+
dim = len(arabic_vectors[0])
|
231 |
+
nlist = max(1, len(arabic_vectors) // 10)
|
232 |
+
quantizer = faiss.IndexFlatL2(dim)
|
233 |
+
self.pdf_arabic_index = faiss.IndexIVFFlat(quantizer, dim, nlist)
|
234 |
+
self.pdf_arabic_index.train(np.array(arabic_vectors))
|
235 |
+
self.pdf_arabic_index.add(np.array(arabic_vectors))
|
236 |
+
|
237 |
self.has_pdf_content = True
|
238 |
return f"PDF processed: {len(self.pdf_english_texts)} English, {len(self.pdf_arabic_texts)} Arabic chunks."
|
239 |
except Exception as e:
|
240 |
logger.error(f"PDF processing error: {e}")
|
241 |
return f"Error processing PDF: {e}"
|
242 |
|
243 |
+
# Create the Gradio interface
|
244 |
def create_interface():
|
245 |
+
"""Set up the Gradio interface for chatting and PDF uploading."""
|
246 |
assistant = Vision2030Assistant()
|
247 |
+
|
248 |
def chat(query, history, session_id):
|
249 |
reply = assistant.generate_response(query, session_id)
|
250 |
history.append((query, reply))
|
251 |
return history, ""
|
252 |
+
|
253 |
with gr.Blocks() as demo:
|
254 |
gr.Markdown("# Vision 2030 Virtual Assistant")
|
255 |
+
session_id = gr.State(value="user1") # Fixed session ID for simplicity
|
256 |
chatbot = gr.Chatbot()
|
257 |
msg = gr.Textbox(label="Ask a question")
|
258 |
submit = gr.Button("Submit")
|
259 |
pdf_upload = gr.File(label="Upload PDF", type="binary")
|
260 |
upload_status = gr.Textbox(label="Upload Status")
|
261 |
+
|
262 |
submit.click(chat, [msg, chatbot, session_id], [chatbot, msg])
|
263 |
pdf_upload.upload(assistant.process_pdf, pdf_upload, upload_status)
|
264 |
+
|
265 |
return demo
|
266 |
|
267 |
+
# Launch the interface
|
268 |
+
if __name__ == "__main__":
|
269 |
+
demo = create_interface()
|
270 |
+
demo.launch()
|