# Force install sentencepiece import sys import subprocess def install_package(package): subprocess.check_call([sys.executable, "-m", "pip", "install", package]) try: import sentencepiece print("SentencePiece is already installed") except ImportError: print("Installing SentencePiece...") install_package("sentencepiece==0.1.99") print("SentencePiece installed successfully") # Import other required libraries import gradio as gr import os import re import torch import numpy as np from pathlib import Path import PyPDF2 from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModelForSeq2SeqLM from sentence_transformers import SentenceTransformer from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.vectorstores import FAISS from langchain.schema import Document from langchain.embeddings import HuggingFaceEmbeddings import spaces # Global variables to store model state model = None tokenizer = None assistant = None model_type = "primary" # Track if we're using primary or fallback model # Create the Vision 2030 Assistant class class Vision2030Assistant: def __init__(self, model, tokenizer, vector_store, model_type="primary"): self.model = model self.tokenizer = tokenizer self.vector_store = vector_store self.model_type = model_type self.conversation_history = [] def answer(self, user_query): # Detect language language = detect_language(user_query) # Add user query to conversation history self.conversation_history.append({"role": "user", "content": user_query}) # Get the full conversation context conversation_context = "\n".join([ f"{'User' if msg['role'] == 'user' else 'Assistant'}: {msg['content']}" for msg in self.conversation_history[-6:] # Keep last 3 turns (6 messages) ]) # Enhance query with conversation context for better retrieval enhanced_query = f"{conversation_context}\n{user_query}" # Retrieve relevant contexts contexts = retrieve_context(enhanced_query, self.vector_store, top_k=5) # Generate response based on model type if self.model_type == "primary": response = generate_response_primary(user_query, contexts, self.model, self.tokenizer, language) else: response = generate_response_fallback(user_query, contexts, self.model, self.tokenizer, language) # Add response to conversation history self.conversation_history.append({"role": "assistant", "content": response}) # Also return sources for transparency sources = [ctx.get("source", "Unknown") for ctx in contexts] unique_sources = list(set(sources)) # Format the response with sources if unique_sources: source_text = "\n\nSources: " + ", ".join([os.path.basename(src) for src in unique_sources]) response_with_sources = response + source_text else: response_with_sources = response return response_with_sources def reset_conversation(self): """Reset the conversation history""" self.conversation_history = [] return "Conversation has been reset." # Helper functions def detect_language(text): """Detect if text is primarily Arabic or English""" arabic_chars = re.findall(r'[\u0600-\u06FF]', text) is_arabic = len(arabic_chars) > len(text) * 0.5 return "arabic" if is_arabic else "english" def retrieve_context(query, vector_store, top_k=5): """Retrieve most relevant document chunks for a given query""" # Search the vector store using similarity search results = vector_store.similarity_search_with_score(query, k=top_k) # Format the retrieved contexts contexts = [] for doc, score in results: contexts.append({ "content": doc.page_content, "source": doc.metadata.get("source", "Unknown"), "relevance_score": score }) return contexts @spaces.GPU def generate_response_primary(query, contexts, model, tokenizer, language="auto"): """Generate a response using ALLaM model""" # Auto-detect language if not specified if language == "auto": language = detect_language(query) # Format the prompt based on language if language == "arabic": instruction = ( "أنت مساعد افتراضي يهتم برؤية السعودية 2030. استخدم المعلومات التالية للإجابة على السؤال. " "إذا لم تعرف الإجابة، فقل بأمانة إنك لا تعرف." ) else: # english instruction = ( "You are a virtual assistant for Saudi Vision 2030. Use the following information to answer the question. " "If you don't know the answer, honestly say you don't know." ) # Combine retrieved contexts context_text = "\n\n".join([f"Document: {ctx['content']}" for ctx in contexts]) # Format the prompt for ALLaM instruction format prompt = f"""[INST] {instruction} Context: {context_text} Question: {query} [/INST]""" try: # Generate response with appropriate parameters for ALLaM inputs = tokenizer(prompt, return_tensors="pt").to(model.device) # Generate with appropriate parameters outputs = model.generate( inputs.input_ids, attention_mask=inputs.attention_mask, max_new_tokens=512, temperature=0.7, top_p=0.9, do_sample=True, repetition_penalty=1.1 ) # Decode the response full_output = tokenizer.decode(outputs[0], skip_special_tokens=True) # Extract just the answer part (after the instruction) response = full_output.split("[/INST]")[-1].strip() # If response is empty for some reason, return the full output if not response: response = full_output return response except Exception as e: print(f"Error during generation: {e}") # Fallback response return "I apologize, but I encountered an error while generating a response." @spaces.GPU def generate_response_fallback(query, contexts, model, tokenizer, language="auto"): """Generate a response using the fallback model (BLOOM or mBART)""" # Auto-detect language if not specified if language == "auto": language = detect_language(query) # Format the prompt based on language if language == "arabic": system_prompt = ( "أنت مساعد افتراضي يهتم برؤية السعودية 2030. استخدم السياق التالي للإجابة على السؤال: " ) else: system_prompt = ( "You are a virtual assistant for Saudi Vision 2030. Use the following context to answer the question: " ) # Combine retrieved contexts context_text = "\n\n".join([f"Document: {ctx['content']}" for ctx in contexts]) # Format prompt for fallback model (simpler format) prompt = f"{system_prompt}\n\nContext:\n{context_text}\n\nQuestion: {query}\n\nAnswer:" try: # Generate with fallback model inputs = tokenizer(prompt, return_tensors="pt", max_length=1024, truncation=True).to(model.device) outputs = model.generate( inputs.input_ids, attention_mask=inputs.attention_mask, max_length=inputs.input_ids.shape[1] + 512, temperature=0.7, top_p=0.9, do_sample=True, pad_token_id=tokenizer.eos_token_id ) # For most models, this is how we extract the response response = tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True) # Cleanup and return return response.strip() except Exception as e: print(f"Error during fallback generation: {e}") return "I apologize, but I encountered an error while generating a response with the fallback model." def process_pdf_files(pdf_files): """Process PDF files and create documents""" documents = [] for pdf_file in pdf_files: try: # Save the uploaded file temporarily temp_path = f"temp_{pdf_file.name}" with open(temp_path, "wb") as f: f.write(pdf_file.read()) # Extract text text = "" with open(temp_path, 'rb') as file: reader = PyPDF2.PdfReader(file) for page in reader.pages: page_text = page.extract_text() if page_text: text += page_text + "\n\n" # Clean up os.remove(temp_path) if text.strip(): # If we got some text doc = Document( page_content=text, metadata={"source": pdf_file.name, "filename": pdf_file.name} ) documents.append(doc) print(f"Successfully processed: {pdf_file.name}") else: print(f"Warning: No text extracted from {pdf_file.name}") except Exception as e: print(f"Error processing {pdf_file.name}: {e}") print(f"Processed {len(documents)} PDF documents") return documents def create_vector_store(documents): """Create a vector store from documents""" # Text splitter for breaking documents into chunks text_splitter = RecursiveCharacterTextSplitter( chunk_size=500, chunk_overlap=50, separators=["\n\n", "\n", ".", "!", "?", ",", " ", ""] ) # Split documents into chunks chunks = [] for doc in documents: doc_chunks = text_splitter.split_text(doc.page_content) # Preserve metadata for each chunk chunks.extend([ Document(page_content=chunk, metadata=doc.metadata) for chunk in doc_chunks ]) print(f"Created {len(chunks)} chunks from {len(documents)} documents") # Create embedding function embedding_function = HuggingFaceEmbeddings( model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2" ) # Create FAISS index vector_store = FAISS.from_documents(chunks, embedding_function) return vector_store # Attempt to create mock documents if none are available yet def create_mock_documents(): """Create mock documents about Vision 2030""" documents = [] # Sample content about Vision 2030 in both languages samples = [ { "content": "رؤية السعودية 2030 هي خطة استراتيجية تهدف إلى تنويع الاقتصاد السعودي وتقليل الاعتماد على النفط مع تطوير قطاعات مختلفة مثل الصحة والتعليم والسياحة.", "source": "vision2030_overview_ar.txt" }, { "content": "Saudi Vision 2030 is a strategic framework aiming to diversify Saudi Arabia's economy and reduce dependence on oil, while developing sectors like health, education, and tourism.", "source": "vision2030_overview_en.txt" }, { "content": "تشمل الأهداف الاقتصادية لرؤية 2030 زيادة مساهمة القطاع الخاص من 40% إلى 65% من الناتج المحلي الإجمالي، ورفع نسبة الصادرات غير النفطية من 16% إلى 50% من الناتج المحلي الإجمالي غير النفطي، وخفض البطالة إلى 7%.", "source": "economic_goals_ar.txt" }, { "content": "The economic goals of Vision 2030 include increasing private sector contribution from 40% to 65% of GDP, raising non-oil exports from 16% to 50%, and reducing unemployment from 11.6% to 7%.", "source": "economic_goals_en.txt" }, { "content": "تركز رؤية 2030 على زيادة مشاركة المرأة في سوق العمل من 22% إلى 30% بحلول عام 2030، مع توفير فرص متساوية في التعليم والعمل.", "source": "women_empowerment_ar.txt" }, { "content": "Vision 2030 emphasizes increasing women's participation in the workforce from 22% to 30% by 2030, while providing equal opportunities in education and employment.", "source": "women_empowerment_en.txt" } ] # Create documents from samples for sample in samples: doc = Document( page_content=sample["content"], metadata={"source": sample["source"], "filename": sample["source"]} ) documents.append(doc) print(f"Created {len(documents)} mock documents") return documents @spaces.GPU def load_primary_model(): """Load the ALLaM-7B model with error handling""" global model, tokenizer, model_type if model is not None and tokenizer is not None and model_type == "primary": return "Primary model (ALLaM-7B) already loaded" model_name = "ALLaM-AI/ALLaM-7B-Instruct-preview" print(f"Loading primary model: {model_name}") try: # Try to import sentencepiece explicitly first import sentencepiece as spm print("SentencePiece imported successfully") # First attempt with AutoTokenizer and explicit trust_remote_code tokenizer = AutoTokenizer.from_pretrained( model_name, trust_remote_code=True, use_fast=False ) # Load model with appropriate settings for ALLaM model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto", ) model_type = "primary" return "Primary model (ALLaM-7B) loaded successfully!" except Exception as e: error_msg = f"Primary model loading failed: {e}" print(error_msg) return error_msg @spaces.GPU def load_fallback_model(): """Load the fallback model (BLOOM-7B1) when ALLaM fails""" global model, tokenizer, model_type if model is not None and tokenizer is not None and model_type == "fallback": return "Fallback model already loaded" try: print("Loading fallback model: BLOOM-7B1...") # Use BLOOM model as fallback (it doesn't need SentencePiece) tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-7b1") model = AutoModelForCausalLM.from_pretrained( "bigscience/bloom-7b1", torch_dtype=torch.bfloat16, device_map="auto", load_in_8bit=True # Reduce memory usage ) model_type = "fallback" return "Fallback model (BLOOM-7B1) loaded successfully!" except Exception as e: return f"Fallback model loading failed: {e}" def load_mbart_model(): """Load mBART as a second fallback option""" global model, tokenizer, model_type try: print("Loading mBART multilingual model...") model_name = "facebook/mbart-large-50-many-to-many-mmt" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained( model_name, torch_dtype=torch.float16, device_map="auto", load_in_8bit=True ) model_type = "mbart" return "mBART multilingual model loaded successfully!" except Exception as e: return f"mBART model loading failed: {e}" # Gradio Interface Functions def process_pdfs(pdf_files): if not pdf_files: return "No files uploaded. Please upload PDF documents about Vision 2030." documents = process_pdf_files(pdf_files) if not documents: return "Failed to extract text from the uploaded PDFs." global assistant, model, tokenizer # Ensure model is loaded if model is None or tokenizer is None: return "Please load a model first (primary or fallback) before processing documents." # Create vector store vector_store = create_vector_store(documents) # Initialize assistant assistant = Vision2030Assistant(model, tokenizer, vector_store, model_type) return f"Successfully processed {len(documents)} documents. The assistant is ready to use!" def use_mock_documents(): """Use mock documents when no PDFs are available""" documents = create_mock_documents() global assistant, model, tokenizer # Ensure model is loaded if model is None or tokenizer is None: return "Please load a model first (primary or fallback) before using mock documents." # Create vector store vector_store = create_vector_store(documents) # Initialize assistant assistant = Vision2030Assistant(model, tokenizer, vector_store, model_type) return "Successfully initialized with mock Vision 2030 documents. The assistant is ready for testing!" @spaces.GPU def answer_query(message, history): global assistant if assistant is None: return [(message, "Please load a model and process documents first (or use mock documents for testing).")] response = assistant.answer(message) history.append((message, response)) return history def reset_chat(): global assistant if assistant is None: return "No active conversation to reset." reset_message = assistant.reset_conversation() return reset_message def restart_factory(): return "Restarting the application... Please reload the page in a few seconds." # Create Gradio interface with gr.Blocks(title="Vision 2030 Virtual Assistant") as demo: gr.Markdown("# Vision 2030 Virtual Assistant") gr.Markdown("Ask questions about Saudi Vision 2030 goals, projects, and progress in Arabic or English.") with gr.Tab("Setup"): gr.Markdown("## Step 1: Load a Model") with gr.Row(): with gr.Column(): primary_btn = gr.Button("Load ALLaM-7B Model (Primary)", variant="primary") primary_output = gr.Textbox(label="Primary Model Status") primary_btn.click(load_primary_model, inputs=[], outputs=primary_output) with gr.Column(): fallback_btn = gr.Button("Load BLOOM-7B1 (Fallback)", variant="secondary") fallback_output = gr.Textbox(label="Fallback Model Status") fallback_btn.click(load_fallback_model, inputs=[], outputs=fallback_output) with gr.Column(): mbart_btn = gr.Button("Load mBART (Alternative)", variant="secondary") mbart_output = gr.Textbox(label="mBART Model Status") mbart_btn.click(load_mbart_model, inputs=[], outputs=mbart_output) gr.Markdown("## Step 2: Prepare Documents") with gr.Row(): with gr.Column(): pdf_files = gr.File(file_types=[".pdf"], file_count="multiple", label="Upload PDF Documents") process_btn = gr.Button("Process Documents", variant="primary") process_output = gr.Textbox(label="Processing Status") process_btn.click(process_pdfs, inputs=[pdf_files], outputs=process_output) with gr.Column(): mock_btn = gr.Button("Use Mock Documents (for testing)", variant="secondary") mock_output = gr.Textbox(label="Mock Documents Status") mock_btn.click(use_mock_documents, inputs=[], outputs=mock_output) gr.Markdown("## Troubleshooting") restart_btn = gr.Button("Restart Application", variant="secondary") restart_output = gr.Textbox(label="Restart Status") restart_btn.click(restart_factory, inputs=[], outputs=restart_output) restart_btn.click(None, [], None, _js="() => {setTimeout(() => {location.reload()}, 5000)}") with gr.Tab("Chat"): chatbot = gr.Chatbot(label="Conversation", height=500) with gr.Row(): message = gr.Textbox( label="Ask a question about Vision 2030 (in Arabic or English)", placeholder="What are the main goals of Vision 2030?", lines=2 ) submit_btn = gr.Button("Submit", variant="primary") reset_btn = gr.Button("Reset Conversation") gr.Markdown("### Example Questions") with gr.Row(): with gr.Column(): gr.Markdown("**English Questions:**") en_examples = gr.Examples( examples=[ "What is Saudi Vision 2030?", "What are the economic goals of Vision 2030?", "How does Vision 2030 support women's empowerment?", "What environmental initiatives are part of Vision 2030?", "What is the role of the Public Investment Fund in Vision 2030?" ], inputs=message ) with gr.Column(): gr.Markdown("**Arabic Questions:**") ar_examples = gr.Examples( examples=[ "ما هي رؤية السعودية 2030؟", "ما هي الأهداف الاقتصادية لرؤية 2030؟", "كيف تدعم رؤية 2030 تمكين المرأة السعودية؟", "ما هي مبادرات رؤية 2030 للحفاظ على البيئة؟", "ما هي استراتيجية صندوق الاستثمارات العامة في رؤية 2030؟" ], inputs=message ) reset_output = gr.Textbox(label="Reset Status", visible=False) submit_btn.click(answer_query, inputs=[message, chatbot], outputs=[chatbot]) message.submit(answer_query, inputs=[message, chatbot], outputs=[chatbot]) reset_btn.click(reset_chat, inputs=[], outputs=[reset_output]) reset_btn.click(lambda: None, inputs=[], outputs=[chatbot], postprocess=lambda: []) # Launch the app demo.launch()