Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
import torch.nn as nn | |
import sentencepiece as spm | |
# Set device | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Load tokenizers | |
sp_pseudo = spm.SentencePieceProcessor(model_file="pseudo.model") | |
sp_code = spm.SentencePieceProcessor(model_file="code.model") | |
# Load the full saved model (architecture + weights) | |
model_path = "pseudo-to-cpp-model.pth" # Adjust path as needed | |
model = torch.load(model_path, map_location=device) | |
model.eval() | |
model = model.to(device) | |
def generate_code(pseudocode, max_len): | |
"""Generate C++ code from pseudocode with streaming output.""" | |
model.eval() | |
src = torch.tensor([sp_pseudo.encode_as_ids(pseudocode)], dtype=torch.long, device=device) | |
tgt = torch.tensor([[2]], dtype=torch.long, device=device) # <bos_id>=2 | |
generated_tokens = [2] | |
response = "" | |
with torch.no_grad(): | |
for _ in range(max_len): | |
output = model(src, tgt) | |
next_token = output[:, -1, :].argmax(-1).item() | |
generated_tokens.append(next_token) | |
tgt = torch.cat([tgt, torch.tensor([[next_token]], device=device)], dim=1) | |
response = sp_code.decode_ids(generated_tokens) | |
yield response # Yield partial output | |
if next_token == 5: # <END> = 5 | |
break | |
yield response # Final output | |
def respond(message, history, max_tokens): | |
"""Wrapper for Gradio interface.""" | |
# Ignore history since it's one-shot generation | |
for response in generate_code(message, max_tokens): | |
yield response | |
# Gradio interface | |
demo = gr.ChatInterface( | |
respond, | |
chatbot=gr.Chatbot(label="Pseudocode to C++ Generator"), | |
textbox=gr.Textbox(placeholder="Enter pseudocode (e.g., 'for i from 1 to n, print i')", label="Pseudocode"), | |
additional_inputs=[ | |
gr.Slider(minimum=10, maximum=1000, value=50, step=1, label="Max tokens"), | |
], | |
title="Pseudocode to C++ Transformer", | |
description="Convert pseudocode to C++ code using a custom transformer trained on the SPoC dataset.", | |
) | |
if __name__ == "__main__": | |
demo.launch() |