abdullah63 commited on
Commit
4933c3e
·
verified ·
1 Parent(s): 2fc123c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +130 -3
app.py CHANGED
@@ -2,6 +2,135 @@ import gradio as gr
2
  import torch
3
  import torch.nn as nn
4
  import sentencepiece as spm
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
  # Set device
7
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
@@ -16,7 +145,6 @@ model = torch.load(model_path, map_location=device, weights_only=False)
16
  model.eval()
17
  model = model.to(device)
18
 
19
-
20
  def generate_code(pseudocode, max_len):
21
  """Generate C++ code from pseudocode with streaming output."""
22
  model.eval()
@@ -33,13 +161,12 @@ def generate_code(pseudocode, max_len):
33
  tgt = torch.cat([tgt, torch.tensor([[next_token]], device=device)], dim=1)
34
  response = sp_code.decode_ids(generated_tokens)
35
  yield response # Yield partial output
36
- if next_token == 5: # <END> = 5
37
  break
38
  yield response # Final output
39
 
40
  def respond(message, history, max_tokens):
41
  """Wrapper for Gradio interface."""
42
- # Ignore history since it's one-shot generation
43
  for response in generate_code(message, max_tokens):
44
  yield response
45
 
 
2
  import torch
3
  import torch.nn as nn
4
  import sentencepiece as spm
5
+ import math
6
+
7
+ # Define Transformer components
8
+ class MultiHeadAttention(nn.Module):
9
+ def __init__(self, d_model, num_heads):
10
+ super(MultiHeadAttention, self).__init__()
11
+ assert d_model % num_heads == 0
12
+ self.d_model = d_model
13
+ self.num_heads = num_heads
14
+ self.d_k = d_model // num_heads
15
+ self.W_q = nn.Linear(d_model, d_model)
16
+ self.W_k = nn.Linear(d_model, d_model)
17
+ self.W_v = nn.Linear(d_model, d_model)
18
+ self.W_o = nn.Linear(d_model, d_model)
19
+
20
+ def scaled_dot_product_attention(self, Q, K, V, mask=None):
21
+ attn_scores = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(self.d_k)
22
+ if mask is not None:
23
+ attn_scores = attn_scores.masked_fill(mask == 0, -1e9)
24
+ attn_probs = torch.softmax(attn_scores, dim=-1)
25
+ output = torch.matmul(attn_probs, V)
26
+ return output
27
+
28
+ def split_heads(self, x):
29
+ batch_size, seq_length, d_model = x.size()
30
+ return x.view(batch_size, seq_length, self.num_heads, self.d_k).transpose(1, 2)
31
+
32
+ def combine_heads(self, x):
33
+ batch_size, _, seq_length, d_k = x.size()
34
+ return x.transpose(1, 2).contiguous().view(batch_size, seq_length, self.d_model)
35
+
36
+ def forward(self, Q, K, V, mask=None):
37
+ Q = self.split_heads(self.W_q(Q))
38
+ K = self.split_heads(self.W_k(K))
39
+ V = self.split_heads(self.W_v(V))
40
+ attn_output = self.scaled_dot_product_attention(Q, K, V, mask)
41
+ output = self.W_o(self.combine_heads(attn_output))
42
+ return output
43
+
44
+ class PositionWiseFeedForward(nn.Module):
45
+ def __init__(self, d_model, d_ff):
46
+ super(PositionWiseFeedForward, self).__init__()
47
+ self.fc1 = nn.Linear(d_model, d_ff)
48
+ self.fc2 = nn.Linear(d_ff, d_model)
49
+ self.relu = nn.ReLU()
50
+
51
+ def forward(self, x):
52
+ return self.fc2(self.relu(self.fc1(x)))
53
+
54
+ class PositionalEncoding(nn.Module):
55
+ def __init__(self, d_model, max_seq_length):
56
+ super(PositionalEncoding, self).__init__()
57
+ pe = torch.zeros(max_seq_length, d_model)
58
+ position = torch.arange(0, max_seq_length, dtype=torch.float).unsqueeze(1)
59
+ div_term = torch.exp(torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model))
60
+ pe[:, 0::2] = torch.sin(position * div_term)
61
+ pe[:, 1::2] = torch.cos(position * div_term)
62
+ self.register_buffer('pe', pe.unsqueeze(0))
63
+
64
+ def forward(self, x):
65
+ return x + self.pe[:, :x.size(1)]
66
+
67
+ class EncoderLayer(nn.Module):
68
+ def __init__(self, d_model, num_heads, d_ff, dropout):
69
+ super(EncoderLayer, self).__init__()
70
+ self.self_attn = MultiHeadAttention(d_model, num_heads)
71
+ self.feed_forward = PositionWiseFeedForward(d_model, d_ff)
72
+ self.norm1 = nn.LayerNorm(d_model)
73
+ self.norm2 = nn.LayerNorm(d_model)
74
+ self.dropout = nn.Dropout(dropout)
75
+
76
+ def forward(self, x, mask):
77
+ attn_output = self.self_attn(x, x, x, mask)
78
+ x = self.norm1(x + self.dropout(attn_output))
79
+ ff_output = self.feed_forward(x)
80
+ x = self.norm2(x + self.dropout(ff_output))
81
+ return x
82
+
83
+ class DecoderLayer(nn.Module):
84
+ def __init__(self, d_model, num_heads, d_ff, dropout):
85
+ super(DecoderLayer, self).__init__()
86
+ self.self_attn = MultiHeadAttention(d_model, num_heads)
87
+ self.cross_attn = MultiHeadAttention(d_model, num_heads)
88
+ self.feed_forward = PositionWiseFeedForward(d_model, d_ff)
89
+ self.norm1 = nn.LayerNorm(d_model)
90
+ self.norm2 = nn.LayerNorm(d_model)
91
+ self.norm3 = nn.LayerNorm(d_model)
92
+ self.dropout = nn.Dropout(dropout)
93
+
94
+ def forward(self, x, enc_output, src_mask, tgt_mask):
95
+ attn_output = self.self_attn(x, x, x, tgt_mask)
96
+ x = self.norm1(x + self.dropout(attn_output))
97
+ attn_output = self.cross_attn(x, enc_output, enc_output, src_mask)
98
+ x = self.norm2(x + self.dropout(attn_output))
99
+ ff_output = self.feed_forward(x)
100
+ x = self.norm3(x + self.dropout(ff_output))
101
+ return x
102
+
103
+ class Transformer(nn.Module):
104
+ def __init__(self, src_vocab_size, tgt_vocab_size, d_model, num_heads, num_layers, d_ff, max_seq_length, dropout):
105
+ super(Transformer, self).__init__()
106
+ self.encoder_embedding = nn.Embedding(src_vocab_size, d_model)
107
+ self.decoder_embedding = nn.Embedding(tgt_vocab_size, d_model)
108
+ self.positional_encoding = PositionalEncoding(d_model, max_seq_length)
109
+ self.encoder_layers = nn.ModuleList([EncoderLayer(d_model, num_heads, d_ff, dropout) for _ in range(num_layers)])
110
+ self.decoder_layers = nn.ModuleList([DecoderLayer(d_model, num_heads, d_ff, dropout) for _ in range(num_layers)])
111
+ self.fc = nn.Linear(d_model, tgt_vocab_size)
112
+ self.dropout = nn.Dropout(dropout)
113
+
114
+ def generate_mask(self, src, tgt):
115
+ src_mask = (src != 0).unsqueeze(1).unsqueeze(2)
116
+ tgt_mask = (tgt != 0).unsqueeze(1).unsqueeze(3)
117
+ seq_length = tgt.size(1)
118
+ nopeak_mask = (1 - torch.triu(torch.ones(1, seq_length, seq_length), diagonal=1)).bool()
119
+ tgt_mask = tgt_mask & nopeak_mask
120
+ return src_mask, tgt_mask
121
+
122
+ def forward(self, src, tgt):
123
+ src_mask, tgt_mask = self.generate_mask(src, tgt)
124
+ src_embedded = self.dropout(self.positional_encoding(self.encoder_embedding(src)))
125
+ tgt_embedded = self.dropout(self.positional_encoding(self.decoder_embedding(tgt)))
126
+ enc_output = src_embedded
127
+ for enc_layer in self.encoder_layers:
128
+ enc_output = enc_layer(enc_output, src_mask)
129
+ dec_output = tgt_embedded
130
+ for dec_layer in self.decoder_layers:
131
+ dec_output = dec_layer(dec_output, enc_output, src_mask, tgt_mask)
132
+ output = self.fc(dec_output)
133
+ return output
134
 
135
  # Set device
136
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 
145
  model.eval()
146
  model = model.to(device)
147
 
 
148
  def generate_code(pseudocode, max_len):
149
  """Generate C++ code from pseudocode with streaming output."""
150
  model.eval()
 
161
  tgt = torch.cat([tgt, torch.tensor([[next_token]], device=device)], dim=1)
162
  response = sp_code.decode_ids(generated_tokens)
163
  yield response # Yield partial output
164
+ if next_token == 5: # <END>=5
165
  break
166
  yield response # Final output
167
 
168
  def respond(message, history, max_tokens):
169
  """Wrapper for Gradio interface."""
 
170
  for response in generate_code(message, max_tokens):
171
  yield response
172