Spaces:
Runtime error
Runtime error
| import os, sys | |
| import math | |
| import json | |
| import importlib | |
| from pathlib import Path | |
| import cv2 | |
| import random | |
| import numpy as np | |
| from PIL import Image | |
| import webdataset as wds | |
| import pytorch_lightning as pl | |
| import torch | |
| import torch.nn.functional as F | |
| from torch.utils.data import Dataset | |
| from torch.utils.data import DataLoader | |
| from torch.utils.data.distributed import DistributedSampler | |
| from torchvision import transforms | |
| from src.utils.train_util import instantiate_from_config | |
| from src.utils.camera_util import ( | |
| FOV_to_intrinsics, | |
| center_looking_at_camera_pose, | |
| get_surrounding_views, | |
| ) | |
| class DataModuleFromConfig(pl.LightningDataModule): | |
| def __init__( | |
| self, | |
| batch_size=8, | |
| num_workers=4, | |
| train=None, | |
| validation=None, | |
| test=None, | |
| **kwargs, | |
| ): | |
| super().__init__() | |
| self.batch_size = batch_size | |
| self.num_workers = num_workers | |
| self.dataset_configs = dict() | |
| if train is not None: | |
| self.dataset_configs['train'] = train | |
| if validation is not None: | |
| self.dataset_configs['validation'] = validation | |
| if test is not None: | |
| self.dataset_configs['test'] = test | |
| def setup(self, stage): | |
| if stage in ['fit']: | |
| self.datasets = dict((k, instantiate_from_config(self.dataset_configs[k])) for k in self.dataset_configs) | |
| else: | |
| raise NotImplementedError | |
| def train_dataloader(self): | |
| sampler = DistributedSampler(self.datasets['train']) | |
| return wds.WebLoader(self.datasets['train'], batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False, sampler=sampler) | |
| def val_dataloader(self): | |
| sampler = DistributedSampler(self.datasets['validation']) | |
| return wds.WebLoader(self.datasets['validation'], batch_size=1, num_workers=self.num_workers, shuffle=False, sampler=sampler) | |
| def test_dataloader(self): | |
| return wds.WebLoader(self.datasets['test'], batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False) | |
| class ObjaverseData(Dataset): | |
| def __init__(self, | |
| root_dir='objaverse/', | |
| meta_fname='valid_paths.json', | |
| input_image_dir='rendering_random_32views', | |
| target_image_dir='rendering_random_32views', | |
| input_view_num=6, | |
| target_view_num=2, | |
| total_view_n=32, | |
| fov=50, | |
| camera_rotation=True, | |
| validation=False, | |
| ): | |
| self.root_dir = Path(root_dir) | |
| self.input_image_dir = input_image_dir | |
| self.target_image_dir = target_image_dir | |
| self.input_view_num = input_view_num | |
| self.target_view_num = target_view_num | |
| self.total_view_n = total_view_n | |
| self.fov = fov | |
| self.camera_rotation = camera_rotation | |
| with open(os.path.join(root_dir, meta_fname)) as f: | |
| filtered_dict = json.load(f) | |
| paths = filtered_dict['good_objs'] | |
| self.paths = paths | |
| self.depth_scale = 4.0 | |
| total_objects = len(self.paths) | |
| print('============= length of dataset %d =============' % len(self.paths)) | |
| def __len__(self): | |
| return len(self.paths) | |
| def load_im(self, path, color): | |
| ''' | |
| replace background pixel with random color in rendering | |
| ''' | |
| pil_img = Image.open(path) | |
| image = np.asarray(pil_img, dtype=np.float32) / 255. | |
| alpha = image[:, :, 3:] | |
| image = image[:, :, :3] * alpha + color * (1 - alpha) | |
| image = torch.from_numpy(image).permute(2, 0, 1).contiguous().float() | |
| alpha = torch.from_numpy(alpha).permute(2, 0, 1).contiguous().float() | |
| return image, alpha | |
| def __getitem__(self, index): | |
| # load data | |
| while True: | |
| input_image_path = os.path.join(self.root_dir, self.input_image_dir, self.paths[index]) | |
| target_image_path = os.path.join(self.root_dir, self.target_image_dir, self.paths[index]) | |
| indices = np.random.choice(range(self.total_view_n), self.input_view_num + self.target_view_num, replace=False) | |
| input_indices = indices[:self.input_view_num] | |
| target_indices = indices[self.input_view_num:] | |
| '''background color, default: white''' | |
| bg_white = [1., 1., 1.] | |
| bg_black = [0., 0., 0.] | |
| image_list = [] | |
| alpha_list = [] | |
| depth_list = [] | |
| normal_list = [] | |
| pose_list = [] | |
| try: | |
| input_cameras = np.load(os.path.join(input_image_path, 'cameras.npz'))['cam_poses'] | |
| for idx in input_indices: | |
| image, alpha = self.load_im(os.path.join(input_image_path, '%03d.png' % idx), bg_white) | |
| normal, _ = self.load_im(os.path.join(input_image_path, '%03d_normal.png' % idx), bg_black) | |
| depth = cv2.imread(os.path.join(input_image_path, '%03d_depth.png' % idx), cv2.IMREAD_UNCHANGED) / 255.0 * self.depth_scale | |
| depth = torch.from_numpy(depth).unsqueeze(0) | |
| pose = input_cameras[idx] | |
| pose = np.concatenate([pose, np.array([[0, 0, 0, 1]])], axis=0) | |
| image_list.append(image) | |
| alpha_list.append(alpha) | |
| depth_list.append(depth) | |
| normal_list.append(normal) | |
| pose_list.append(pose) | |
| target_cameras = np.load(os.path.join(target_image_path, 'cameras.npz'))['cam_poses'] | |
| for idx in target_indices: | |
| image, alpha = self.load_im(os.path.join(target_image_path, '%03d.png' % idx), bg_white) | |
| normal, _ = self.load_im(os.path.join(target_image_path, '%03d_normal.png' % idx), bg_black) | |
| depth = cv2.imread(os.path.join(target_image_path, '%03d_depth.png' % idx), cv2.IMREAD_UNCHANGED) / 255.0 * self.depth_scale | |
| depth = torch.from_numpy(depth).unsqueeze(0) | |
| pose = target_cameras[idx] | |
| pose = np.concatenate([pose, np.array([[0, 0, 0, 1]])], axis=0) | |
| image_list.append(image) | |
| alpha_list.append(alpha) | |
| depth_list.append(depth) | |
| normal_list.append(normal) | |
| pose_list.append(pose) | |
| except Exception as e: | |
| print(e) | |
| index = np.random.randint(0, len(self.paths)) | |
| continue | |
| break | |
| images = torch.stack(image_list, dim=0).float() # (6+V, 3, H, W) | |
| alphas = torch.stack(alpha_list, dim=0).float() # (6+V, 1, H, W) | |
| depths = torch.stack(depth_list, dim=0).float() # (6+V, 1, H, W) | |
| normals = torch.stack(normal_list, dim=0).float() # (6+V, 3, H, W) | |
| w2cs = torch.from_numpy(np.stack(pose_list, axis=0)).float() # (6+V, 4, 4) | |
| c2ws = torch.linalg.inv(w2cs).float() | |
| normals = normals * 2.0 - 1.0 | |
| normals = F.normalize(normals, dim=1) | |
| normals = (normals + 1.0) / 2.0 | |
| normals = torch.lerp(torch.zeros_like(normals), normals, alphas) | |
| # random rotation along z axis | |
| if self.camera_rotation: | |
| degree = np.random.uniform(0, math.pi * 2) | |
| rot = torch.tensor([ | |
| [np.cos(degree), -np.sin(degree), 0, 0], | |
| [np.sin(degree), np.cos(degree), 0, 0], | |
| [0, 0, 1, 0], | |
| [0, 0, 0, 1], | |
| ]).unsqueeze(0).float() | |
| c2ws = torch.matmul(rot, c2ws) | |
| # rotate normals | |
| N, _, H, W = normals.shape | |
| normals = normals * 2.0 - 1.0 | |
| normals = torch.matmul(rot[:, :3, :3], normals.view(N, 3, -1)).view(N, 3, H, W) | |
| normals = F.normalize(normals, dim=1) | |
| normals = (normals + 1.0) / 2.0 | |
| normals = torch.lerp(torch.zeros_like(normals), normals, alphas) | |
| # random scaling | |
| if np.random.rand() < 0.5: | |
| scale = np.random.uniform(0.8, 1.0) | |
| c2ws[:, :3, 3] *= scale | |
| depths *= scale | |
| # instrinsics of perspective cameras | |
| K = FOV_to_intrinsics(self.fov) | |
| Ks = K.unsqueeze(0).repeat(self.input_view_num + self.target_view_num, 1, 1).float() | |
| data = { | |
| 'input_images': images[:self.input_view_num], # (6, 3, H, W) | |
| 'input_alphas': alphas[:self.input_view_num], # (6, 1, H, W) | |
| 'input_depths': depths[:self.input_view_num], # (6, 1, H, W) | |
| 'input_normals': normals[:self.input_view_num], # (6, 3, H, W) | |
| 'input_c2ws': c2ws_input[:self.input_view_num], # (6, 4, 4) | |
| 'input_Ks': Ks[:self.input_view_num], # (6, 3, 3) | |
| # lrm generator input and supervision | |
| 'target_images': images[self.input_view_num:], # (V, 3, H, W) | |
| 'target_alphas': alphas[self.input_view_num:], # (V, 1, H, W) | |
| 'target_depths': depths[self.input_view_num:], # (V, 1, H, W) | |
| 'target_normals': normals[self.input_view_num:], # (V, 3, H, W) | |
| 'target_c2ws': c2ws[self.input_view_num:], # (V, 4, 4) | |
| 'target_Ks': Ks[self.input_view_num:], # (V, 3, 3) | |
| 'depth_available': 1, | |
| } | |
| return data | |
| class ValidationData(Dataset): | |
| def __init__(self, | |
| root_dir='objaverse/', | |
| input_view_num=6, | |
| input_image_size=256, | |
| fov=50, | |
| ): | |
| self.root_dir = Path(root_dir) | |
| self.input_view_num = input_view_num | |
| self.input_image_size = input_image_size | |
| self.fov = fov | |
| self.paths = sorted(os.listdir(self.root_dir)) | |
| print('============= length of dataset %d =============' % len(self.paths)) | |
| cam_distance = 2.5 | |
| azimuths = np.array([30, 90, 150, 210, 270, 330]) | |
| elevations = np.array([30, -20, 30, -20, 30, -20]) | |
| azimuths = np.deg2rad(azimuths) | |
| elevations = np.deg2rad(elevations) | |
| x = cam_distance * np.cos(elevations) * np.cos(azimuths) | |
| y = cam_distance * np.cos(elevations) * np.sin(azimuths) | |
| z = cam_distance * np.sin(elevations) | |
| cam_locations = np.stack([x, y, z], axis=-1) | |
| cam_locations = torch.from_numpy(cam_locations).float() | |
| c2ws = center_looking_at_camera_pose(cam_locations) | |
| self.c2ws = c2ws.float() | |
| self.Ks = FOV_to_intrinsics(self.fov).unsqueeze(0).repeat(6, 1, 1).float() | |
| render_c2ws = get_surrounding_views(M=8, radius=cam_distance) | |
| render_Ks = FOV_to_intrinsics(self.fov).unsqueeze(0).repeat(render_c2ws.shape[0], 1, 1) | |
| self.render_c2ws = render_c2ws.float() | |
| self.render_Ks = render_Ks.float() | |
| def __len__(self): | |
| return len(self.paths) | |
| def load_im(self, path, color): | |
| ''' | |
| replace background pixel with random color in rendering | |
| ''' | |
| pil_img = Image.open(path) | |
| pil_img = pil_img.resize((self.input_image_size, self.input_image_size), resample=Image.BICUBIC) | |
| image = np.asarray(pil_img, dtype=np.float32) / 255. | |
| if image.shape[-1] == 4: | |
| alpha = image[:, :, 3:] | |
| image = image[:, :, :3] * alpha + color * (1 - alpha) | |
| else: | |
| alpha = np.ones_like(image[:, :, :1]) | |
| image = torch.from_numpy(image).permute(2, 0, 1).contiguous().float() | |
| alpha = torch.from_numpy(alpha).permute(2, 0, 1).contiguous().float() | |
| return image, alpha | |
| def __getitem__(self, index): | |
| # load data | |
| input_image_path = os.path.join(self.root_dir, self.paths[index]) | |
| '''background color, default: white''' | |
| # color = np.random.uniform(0.48, 0.52) | |
| bkg_color = [1.0, 1.0, 1.0] | |
| image_list = [] | |
| alpha_list = [] | |
| for idx in range(self.input_view_num): | |
| image, alpha = self.load_im(os.path.join(input_image_path, f'{idx:03d}.png'), bkg_color) | |
| image_list.append(image) | |
| alpha_list.append(alpha) | |
| images = torch.stack(image_list, dim=0).float() # (6+V, 3, H, W) | |
| alphas = torch.stack(alpha_list, dim=0).float() # (6+V, 1, H, W) | |
| data = { | |
| 'input_images': images, # (6, 3, H, W) | |
| 'input_alphas': alphas, # (6, 1, H, W) | |
| 'input_c2ws': self.c2ws, # (6, 4, 4) | |
| 'input_Ks': self.Ks, # (6, 3, 3) | |
| 'render_c2ws': self.render_c2ws, | |
| 'render_Ks': self.render_Ks, | |
| } | |
| return data | |