Spaces:
Runtime error
Runtime error
| import os | |
| import imageio | |
| import rembg | |
| import torch | |
| import numpy as np | |
| import PIL.Image | |
| from PIL import Image | |
| from typing import Any | |
| def remove_background(image: PIL.Image.Image, | |
| rembg_session: Any = None, | |
| force: bool = False, | |
| **rembg_kwargs, | |
| ) -> PIL.Image.Image: | |
| do_remove = True | |
| if image.mode == "RGBA" and image.getextrema()[3][0] < 255: | |
| do_remove = False | |
| do_remove = do_remove or force | |
| if do_remove: | |
| image = rembg.remove(image, session=rembg_session, **rembg_kwargs) | |
| return image | |
| def resize_foreground( | |
| image: PIL.Image.Image, | |
| ratio: float, | |
| ) -> PIL.Image.Image: | |
| image = np.array(image) | |
| assert image.shape[-1] == 4 | |
| alpha = np.where(image[..., 3] > 0) | |
| y1, y2, x1, x2 = ( | |
| alpha[0].min(), | |
| alpha[0].max(), | |
| alpha[1].min(), | |
| alpha[1].max(), | |
| ) | |
| # crop the foreground | |
| fg = image[y1:y2, x1:x2] | |
| # pad to square | |
| size = max(fg.shape[0], fg.shape[1]) | |
| ph0, pw0 = (size - fg.shape[0]) // 2, (size - fg.shape[1]) // 2 | |
| ph1, pw1 = size - fg.shape[0] - ph0, size - fg.shape[1] - pw0 | |
| new_image = np.pad( | |
| fg, | |
| ((ph0, ph1), (pw0, pw1), (0, 0)), | |
| mode="constant", | |
| constant_values=((0, 0), (0, 0), (0, 0)), | |
| ) | |
| # compute padding according to the ratio | |
| new_size = int(new_image.shape[0] / ratio) | |
| # pad to size, double side | |
| ph0, pw0 = (new_size - size) // 2, (new_size - size) // 2 | |
| ph1, pw1 = new_size - size - ph0, new_size - size - pw0 | |
| new_image = np.pad( | |
| new_image, | |
| ((ph0, ph1), (pw0, pw1), (0, 0)), | |
| mode="constant", | |
| constant_values=((0, 0), (0, 0), (0, 0)), | |
| ) | |
| new_image = PIL.Image.fromarray(new_image) | |
| return new_image | |
| def images_to_video( | |
| images: torch.Tensor, | |
| output_path: str, | |
| fps: int = 30, | |
| ) -> None: | |
| # images: (N, C, H, W) | |
| video_dir = os.path.dirname(output_path) | |
| video_name = os.path.basename(output_path) | |
| os.makedirs(video_dir, exist_ok=True) | |
| frames = [] | |
| for i in range(len(images)): | |
| frame = (images[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8) | |
| assert frame.shape[0] == images.shape[2] and frame.shape[1] == images.shape[3], \ | |
| f"Frame shape mismatch: {frame.shape} vs {images.shape}" | |
| assert frame.min() >= 0 and frame.max() <= 255, \ | |
| f"Frame value out of range: {frame.min()} ~ {frame.max()}" | |
| frames.append(frame) | |
| imageio.mimwrite(output_path, np.stack(frames), fps=fps, quality=10) |