import gradio as gr from huggingface_hub import InferenceClient # Set up the client for Hugging Face Inference client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") # Define the respond function def respond(message, history, system_message, max_tokens, temperature, top_p): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token return response # Gradio interface function for the chatbot def gradio_interface(message, history, system_message, max_tokens, temperature, top_p): return respond(message, history, system_message, max_tokens, temperature, top_p) # Define the Gradio interface demo = gr.Interface( fn=gradio_interface, inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System Message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), gr.Chatbot(label="Chat History"), ], outputs=gr.Textbox(), ) demo.launch(share=True)