File size: 5,336 Bytes
f7c0abb
e7b1f60
fa8e2ce
d0fc55f
256ed7f
f7c0abb
05d6121
f9d8346
256ed7f
e7b1f60
256ed7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7b1f60
 
256ed7f
 
465b43c
256ed7f
 
fa8e2ce
6025f1c
 
256ed7f
05d6121
256ed7f
e7b1f60
 
2372d93
05d6121
6025f1c
603790a
d0fc55f
256ed7f
9ab6d04
6025f1c
 
e181176
f7c0abb
 
d0fc55f
045ef7e
256ed7f
 
 
 
f7c0abb
 
05d6121
 
f7c0abb
256ed7f
05d6121
e7b1f60
256ed7f
 
e7b1f60
 
05d6121
b9e465f
256ed7f
 
 
 
fa8e2ce
256ed7f
93c4b1f
7a83ce6
20d0b59
256ed7f
 
 
 
 
 
 
 
 
387e225
256ed7f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import os
from fastapi import FastAPI, HTTPException, Query
from fastapi.responses import StreamingResponse
from openai import AsyncOpenAI
from collections import defaultdict

app = FastAPI()

# Define available models
AVAILABLE_MODELS = {
    "openai/gpt-4.1": "OpenAI GPT-4.1",
    "openai/gpt-4.1-mini": "OpenAI GPT-4.1-mini",
    "openai/gpt-4.1-nano": "OpenAI GPT-4.1-nano",
    "openai/gpt-4o": "OpenAI GPT-4o",
    "openai/gpt-4o-mini": "OpenAI GPT-4o mini",
    "openai/o4-mini": "OpenAI o4-mini",
    "microsoft/MAI-DS-R1": "MAI-DS-R1",
    "microsoft/Phi-3.5-MoE-instruct": "Phi-3.5-MoE instruct (128k)",
    "microsoft/Phi-3.5-mini-instruct": "Phi-3.5-mini instruct (128k)",
    "microsoft/Phi-3.5-vision-instruct": "Phi-3.5-vision instruct (128k)",
    "microsoft/Phi-3-medium-128k-instruct": "Phi-3-medium instruct (128k)",
    "microsoft/Phi-3-medium-4k-instruct": "Phi-3-medium instruct (4k)",
    "microsoft/Phi-3-mini-128k-instruct": "Phi-3-mini instruct (128k)",
    "microsoft/Phi-3-small-128k-instruct": "Phi-3-small instruct (128k)",
    "microsoft/Phi-3-small-8k-instruct": "Phi-3-small instruct (8k)",
    "microsoft/Phi-4": "Phi-4",
    "microsoft/Phi-4-mini-instruct": "Phi-4-mini-instruct",
    "microsoft/Phi-4-multimodal-instruct": "Phi-4-multimodal-instruct",
    "ai21-labs/AI21-Jamba-1.5-Large": "AI21 Jamba 1.5 Large",
    "ai21-labs/AI21-Jamba-1.5-Mini": "AI21 Jamba 1.5 Mini",
    "mistral-ai/Codestral-2501": "Codestral 25.01",
    "cohere/Cohere-command-r": "Cohere Command R",
    "cohere/Cohere-command-r-08-2024": "Cohere Command R 08-2024",
    "cohere/Cohere-command-r-plus": "Cohere Command R+",
    "cohere/Cohere-command-r-plus-08-2024": "Cohere Command R+ 08-2024",
    "deepseek/DeepSeek-R1": "DeepSeek-R1",
    "deepseek/DeepSeek-V3-0324": "DeepSeek-V3-0324",
    "meta/Llama-3.2-11B-Vision-Instruct": "Llama-3.2-11B-Vision-Instruct",
    "meta/Llama-3.2-90B-Vision-Instruct": "Llama-3.2-90B-Vision-Instruct",
    "meta/Llama-3.3-70B-Instruct": "Llama-3.3-70B-Instruct",
    "meta/Llama-4-Maverick-17B-128E-Instruct-FP8": "Llama 4 Maverick 17B 128E Instruct FP8",
    "meta/Llama-4-Scout-17B-16E-Instruct": "Llama 4 Scout 17B 16E Instruct",
    "meta/Meta-Llama-3.1-405B-Instruct": "Meta-Llama-3.1-405B-Instruct",
    "meta/Meta-Llama-3.1-70B-Instruct": "Meta-Llama-3.1-70B-Instruct",
    "meta/Meta-Llama-3.1-8B-Instruct": "Meta-Llama-3.1-8B-Instruct",
    "meta/Meta-Llama-3-70B-Instruct": "Meta-Llama-3-70B-Instruct",
    "meta/Meta-Llama-3-8B-Instruct": "Meta-Llama-3-8B-Instruct",
    "mistral-ai/Ministral-3B": "Ministral 3B",
    "mistral-ai/Mistral-Large-2411": "Mistral Large 24.11",
    "mistral-ai/Mistral-Nemo": "Mistral Nemo",
    "mistral-ai/Mistral-large-2407": "Mistral Large (2407)",
    "mistral-ai/Mistral-small": "Mistral Small",
    "cohere/cohere-command-a": "Cohere Command A",
    "core42/jais-30b-chat": "JAIS 30b Chat",
    "mistral-ai/mistral-small-2503": "Mistral Small 3.1"
}

# In-memory chat history (chat_id: messages[])
chat_histories = defaultdict(list)

# Function to generate response using chat history
async def generate_ai_response(chat_id: str, model: str):
    token = os.getenv("GITHUB_TOKEN")
    if not token:
        raise HTTPException(status_code=500, detail="GitHub token not configured")

    endpoint = "https://models.github.ai/inference"

    if model not in AVAILABLE_MODELS:
        raise HTTPException(status_code=400, detail=f"Model not available. Choose from: {', '.join(AVAILABLE_MODELS.keys())}")

    client = AsyncOpenAI(base_url=endpoint, api_key=token)

    try:
        stream = await client.chat.completions.create(
            messages=chat_histories[chat_id],  # full chat history
            model=model,
            temperature=1.0,
            top_p=1.0,
            stream=True
        )

        async for chunk in stream:
            if chunk.choices and chunk.choices[0].delta.content:
                content = chunk.choices[0].delta.content
                yield content
                # Add assistant reply to history
                chat_histories[chat_id].append({"role": "assistant", "content": content})

    except Exception as err:
        yield f"Error: {str(err)}"
        raise HTTPException(status_code=500, detail="AI generation failed")

# Endpoint to generate a response with chat memory
@app.post("/generate")
async def generate_response(
    chat_id: str = Query(..., description="Unique ID for the chat session"),
    prompt: str = Query(..., description="The user message"),
    model: str = Query("openai/gpt-4.1-mini", description="The model to use for generation")
):
    if not prompt:
        raise HTTPException(status_code=400, detail="Prompt cannot be empty")

    # Add user message to history
    chat_histories[chat_id].append({"role": "user", "content": prompt})

    return StreamingResponse(
        generate_ai_response(chat_id, model),
        media_type="text/event-stream"
    )

# Optional: endpoint to reset chat history
@app.post("/reset")
async def reset_chat(chat_id: str = Query(..., description="ID of chat to reset")):
    if chat_id in chat_histories:
        chat_histories[chat_id].clear()
        return {"message": f"Chat {chat_id} history reset."}
    else:
        raise HTTPException(status_code=404, detail="Chat ID not found")

def get_app():
    return app