chats / app.py
abdullahalioo's picture
Update app.py
2a9b961 verified
raw
history blame
5.64 kB
import os
import asyncio
from fastapi import FastAPI, HTTPException, Query
from fastapi.responses import StreamingResponse
from openai import AsyncOpenAI
from collections import defaultdict
app = FastAPI()
# Define available models
AVAILABLE_MODELS = {
"openai/gpt-4.1": "OpenAI GPT-4.1",
"openai/gpt-4.1-mini": "OpenAI GPT-4.1-mini",
"openai/gpt-4.1-nano": "OpenAI GPT-4.1-nano",
"openai/gpt-4o": "OpenAI GPT-4o",
"openai/gpt-4o-mini": "OpenAI GPT-4o mini",
"openai/o4-mini": "OpenAI o4-mini",
"microsoft/MAI-DS-R1": "MAI-DS-R1",
"microsoft/Phi-3.5-MoE-instruct": "Phi-3.5-MoE instruct (128k)",
"microsoft/Phi-3.5-mini-instruct": "Phi-3.5-mini instruct (128k)",
"microsoft/Phi-3.5-vision-instruct": "Phi-3.5-vision instruct (128k)",
"microsoft/Phi-3-medium-128k-instruct": "Phi-3-medium instruct (128k)",
"microsoft/Phi-3-medium-4k-instruct": "Phi-3-medium instruct (4k)",
"microsoft/Phi-3-mini-128k-instruct": "Phi-3-mini instruct (128k)",
"microsoft/Phi-3-small-128k-instruct": "Phi-3-small instruct (128k)",
"microsoft/Phi-3-small-8k-instruct": "Phi-3-small instruct (8k)",
"microsoft/Phi-4": "Phi-4",
"microsoft/Phi-4-mini-instruct": "Phi-4-mini-instruct",
"microsoft/Phi-4-multimodal-instruct": "Phi-4-multimodal-instruct",
"ai21-labs/AI21-Jamba-1.5-Large": "AI21 Jamba 1.5 Large",
"ai21-labs/AI21-Jamba-1.5-Mini": "AI21 Jamba 1.5 Mini",
"mistral-ai/Codestral-2501": "Codestral 25.01",
"cohere/Cohere-command-r": "Cohere Command R",
"cohere/Cohere-command-r-08-2024": "Cohere Command R 08-2024",
"cohere/Cohere-command-r-plus": "Cohere Command R+",
"cohere/Cohere-command-r-plus-08-2024": "Cohere Command R+ 08-2024",
"deepseek/DeepSeek-R1": "DeepSeek-R1",
"deepseek/DeepSeek-V3-0324": "DeepSeek-V3-0324",
"meta/Llama-3.2-11B-Vision-Instruct": "Llama-3.2-11B-Vision-Instruct",
"meta/Llama-3.2-90B-Vision-Instruct": "Llama-3.2-90B-Vision-Instruct",
"meta/Llama-3.3-70B-Instruct": "Llama-3.3-70B-Instruct",
"meta/Llama-4-Maverick-17B-128E-Instruct-FP8": "Llama 4 Maverick 17B 128E Instruct FP8",
"meta/Llama-4-Scout-17B-16E-Instruct": "Llama 4 Scout 17B 16E Instruct",
"meta/Meta-Llama-3.1-405B-Instruct": "Meta-Llama-3.1-405B-Instruct",
"meta/Meta-Llama-3.1-70B-Instruct": "Meta-Llama-3.1-70B-Instruct",
"meta/Meta-Llama-3.1-8B-Instruct": "Meta-Llama-3.1-8B-Instruct",
"meta/Meta-Llama-3-70B-Instruct": "Meta-Llama-3-70B-Instruct",
"meta/Meta-Llama-3-8B-Instruct": "Meta-Llama-3-8B-Instruct",
"mistral-ai/Ministral-3B": "Ministral 3B",
"mistral-ai/Mistral-Large-2411": "Mistral Large 24.11",
"mistral-ai/Mistral-Nemo": "Mistral Nemo",
"mistral-ai/Mistral-large-2407": "Mistral Large (2407)",
"mistral-ai/Mistral-small": "Mistral Small",
"cohere/cohere-command-a": "Cohere Command A",
"core42/jais-30b-chat": "JAIS 30b Chat",
"mistral-ai/mistral-small-2503": "Mistral Small 3.1"
}
# Chat memory (in-memory)
chat_histories = defaultdict(list)
MAX_HISTORY = 100 # limit memory to avoid crashes
# Generate response stream
async def generate_ai_response(chat_id: str, model: str):
token = os.getenv("GITHUB_TOKEN")
if not token:
raise HTTPException(status_code=500, detail="GitHub token not configured")
endpoint = "https://models.github.ai/inference"
if model not in AVAILABLE_MODELS:
raise HTTPException(
status_code=400,
detail=f"Model not available. Choose from: {', '.join(AVAILABLE_MODELS.keys())}"
)
client = AsyncOpenAI(base_url=endpoint, api_key=token)
try:
stream = await asyncio.wait_for(
client.chat.completions.create(
messages=chat_histories[chat_id],
model=model,
temperature=1.0,
top_p=1.0,
stream=True
),
timeout=60 # Prevent hangs
)
async for chunk in stream:
if chunk.choices and chunk.choices[0].delta.content:
content = chunk.choices[0].delta.content
yield content
chat_histories[chat_id].append({"role": "assistant", "content": content})
chat_histories[chat_id] = chat_histories[chat_id][-MAX_HISTORY:]
except asyncio.TimeoutError:
yield "Error: Response timed out."
raise HTTPException(status_code=504, detail="Model timed out.")
except Exception as err:
yield f"Error: {str(err)}"
raise HTTPException(status_code=500, detail="AI generation failed")
# Chat endpoint
@app.post("/generate")
async def generate_response(
chat_id: str = Query(..., description="Unique chat ID"),
prompt: str = Query(..., description="User message"),
model: str = Query("openai/gpt-4.1-mini", description="Model to use")
):
if not prompt:
raise HTTPException(status_code=400, detail="Prompt cannot be empty")
chat_histories[chat_id].append({"role": "user", "content": prompt})
chat_histories[chat_id] = chat_histories[chat_id][-MAX_HISTORY:]
return StreamingResponse(
generate_ai_response(chat_id, model),
media_type="text/event-stream"
)
# Optional: reset chat history
@app.post("/reset")
async def reset_chat(chat_id: str = Query(..., description="ID of chat to reset")):
if chat_id in chat_histories:
chat_histories[chat_id].clear()
return {"message": f"Chat {chat_id} history reset."}
else:
raise HTTPException(status_code=404, detail="Chat ID not found")
# For ASGI servers like Uvicorn
def get_app():
return app