Spaces:
Runtime error
Runtime error
Update main.py
Browse files
main.py
CHANGED
@@ -1,50 +1,75 @@
|
|
1 |
-
from fastapi import FastAPI
|
2 |
from pydantic import BaseModel
|
3 |
from fastapi.middleware.cors import CORSMiddleware
|
4 |
-
from g4f.client import Client
|
5 |
from fastapi.responses import StreamingResponse
|
6 |
|
7 |
-
|
8 |
-
|
9 |
|
10 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
app = FastAPI()
|
12 |
|
13 |
-
# CORS
|
14 |
app.add_middleware(
|
15 |
CORSMiddleware,
|
16 |
-
allow_origins=["*"],
|
17 |
allow_credentials=True,
|
18 |
allow_methods=["*"],
|
19 |
allow_headers=["*"],
|
20 |
)
|
21 |
|
22 |
-
# Request
|
23 |
class Question(BaseModel):
|
24 |
question: str
|
25 |
|
|
|
26 |
async def generate_response_chunks(prompt: str):
|
27 |
try:
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
{"role": "user", "content": prompt},
|
32 |
-
{"role": "system", "content": "You are a Orion AI assistant created by abdullah ali who is very intelegent and he is 13 years old and live in lahore."}
|
33 |
-
],
|
34 |
-
stream=True # Enable streaming
|
35 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
yield content
|
41 |
-
|
42 |
except Exception as e:
|
43 |
yield f"Error occurred: {e}"
|
44 |
|
|
|
45 |
@app.post("/ask")
|
46 |
async def ask(question: Question):
|
47 |
return StreamingResponse(
|
48 |
generate_response_chunks(question.question),
|
49 |
media_type="text/plain"
|
50 |
-
)
|
|
|
1 |
+
from fastapi import FastAPI
|
2 |
from pydantic import BaseModel
|
3 |
from fastapi.middleware.cors import CORSMiddleware
|
|
|
4 |
from fastapi.responses import StreamingResponse
|
5 |
|
6 |
+
import torch
|
7 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
8 |
|
9 |
+
# Define model ID
|
10 |
+
model_id = "Qwen/Qwen2.5-VL-7B-Instruct"
|
11 |
+
|
12 |
+
# Download model and tokenizer locally
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
14 |
+
model = AutoModelForCausalLM.from_pretrained(
|
15 |
+
model_id,
|
16 |
+
device_map="auto", # Use "cpu" if you want to force CPU: device_map="cpu"
|
17 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, # GPU: float16, CPU: float32
|
18 |
+
trust_remote_code=True
|
19 |
+
)
|
20 |
+
model.eval()
|
21 |
+
|
22 |
+
# Initialize FastAPI
|
23 |
app = FastAPI()
|
24 |
|
25 |
+
# CORS settings
|
26 |
app.add_middleware(
|
27 |
CORSMiddleware,
|
28 |
+
allow_origins=["*"],
|
29 |
allow_credentials=True,
|
30 |
allow_methods=["*"],
|
31 |
allow_headers=["*"],
|
32 |
)
|
33 |
|
34 |
+
# Request model
|
35 |
class Question(BaseModel):
|
36 |
question: str
|
37 |
|
38 |
+
# Generate response chunks
|
39 |
async def generate_response_chunks(prompt: str):
|
40 |
try:
|
41 |
+
# Define system prompt
|
42 |
+
system_prompt = (
|
43 |
+
"You are a Orion AI assistant created by Abdullah Ali who is very intelligent and he is 13 years old and lives in Lahore."
|
|
|
|
|
|
|
|
|
44 |
)
|
45 |
+
full_prompt = f"{system_prompt}\n\nUser: {prompt}\nAssistant:"
|
46 |
+
|
47 |
+
# Tokenize input
|
48 |
+
input_ids = tokenizer(full_prompt, return_tensors="pt").to(model.device)
|
49 |
+
|
50 |
+
# Generate output
|
51 |
+
output_ids = model.generate(
|
52 |
+
**input_ids,
|
53 |
+
max_new_tokens=512,
|
54 |
+
do_sample=True,
|
55 |
+
temperature=0.7,
|
56 |
+
top_p=0.9,
|
57 |
+
repetition_penalty=1.1
|
58 |
+
)
|
59 |
+
|
60 |
+
# Decode output
|
61 |
+
output_text = tokenizer.decode(output_ids[0][input_ids.input_ids.shape[-1]:], skip_special_tokens=True)
|
62 |
|
63 |
+
# Stream output letter-by-letter
|
64 |
+
for letter in output_text:
|
65 |
+
yield letter
|
|
|
|
|
66 |
except Exception as e:
|
67 |
yield f"Error occurred: {e}"
|
68 |
|
69 |
+
# API Endpoint
|
70 |
@app.post("/ask")
|
71 |
async def ask(question: Question):
|
72 |
return StreamingResponse(
|
73 |
generate_response_chunks(question.question),
|
74 |
media_type="text/plain"
|
75 |
+
)
|