hostserver2 / main.py
abdullahalioo's picture
Update main.py
f7b7ed5 verified
from fastapi import FastAPI
from pydantic import BaseModel
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import StreamingResponse
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import os
import asyncio
# βœ… Set all cache directories to a writable location
cache_dir = "/tmp/hf_home"
os.environ["HF_HOME"] = cache_dir
os.environ["TRANSFORMERS_CACHE"] = cache_dir
os.environ["HUGGINGFACE_HUB_CACHE"] = cache_dir
# βœ… Create cache directory with proper permissions
os.makedirs(cache_dir, exist_ok=True)
os.chmod(cache_dir, 0o777) # Make writable by all
# βœ… Load model and tokenizer
model_name = "Qwen/Qwen2.5-0.5B-Instruct"
try:
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, cache_dir=cache_dir)
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, cache_dir=cache_dir)
except Exception as e:
print(f"Error loading model: {e}")
raise
# βœ… Use CUDA if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# βœ… Initialize FastAPI
app = FastAPI()
# βœ… Enable CORS
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# βœ… Input data model
class Question(BaseModel):
question: str
# βœ… Instructional system prompt
SYSTEM_PROMPT = "You are Orion, an intelligent AI assistant created by Abdullah Ali, a 13-year-old from Lahore. Respond kindly and wisely."
# βœ… Streaming response generator
async def generate_response_chunks(prompt: str):
qwen_prompt = (
f"<|im_start|>system\n{SYSTEM_PROMPT}<|im_end|>\n"
f"<|im_start|>user\n{prompt}<|im_end|>\n"
f"<|im_start|>assistant\n"
)
inputs = tokenizer(qwen_prompt, return_tensors="pt").to(device)
outputs = model.generate(
**inputs,
max_new_tokens=256,
do_sample=True,
temperature=0.7,
top_p=0.9,
pad_token_id=tokenizer.eos_token_id
)
full_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
reply = full_output.split("<|im_start|>assistant\n")[-1].strip()
for word in reply.split():
yield word + " "
await asyncio.sleep(0.01)
# βœ… API route
@app.post("/ask")
async def ask(question: Question):
return StreamingResponse(generate_response_chunks(question.question), media_type="text/plain")