Spaces:
Sleeping
Sleeping
from fastapi import FastAPI | |
from pydantic import BaseModel | |
from fastapi.middleware.cors import CORSMiddleware | |
from fastapi.responses import StreamingResponse | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
import os | |
import asyncio | |
# β Set all cache directories to a writable location | |
cache_dir = "/tmp/hf_home" | |
os.environ["HF_HOME"] = cache_dir | |
os.environ["TRANSFORMERS_CACHE"] = cache_dir | |
os.environ["HUGGINGFACE_HUB_CACHE"] = cache_dir | |
# β Create cache directory with proper permissions | |
os.makedirs(cache_dir, exist_ok=True) | |
os.chmod(cache_dir, 0o777) # Make writable by all | |
# β Load model and tokenizer | |
model_name = "Qwen/Qwen2.5-0.5B-Instruct" | |
try: | |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, cache_dir=cache_dir) | |
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, cache_dir=cache_dir) | |
except Exception as e: | |
print(f"Error loading model: {e}") | |
raise | |
# β Use CUDA if available | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
# β Initialize FastAPI | |
app = FastAPI() | |
# β Enable CORS | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["*"], | |
allow_credentials=True, | |
allow_methods=["*"], | |
allow_headers=["*"], | |
) | |
# β Input data model | |
class Question(BaseModel): | |
question: str | |
# β Instructional system prompt | |
SYSTEM_PROMPT = "You are Orion, an intelligent AI assistant created by Abdullah Ali, a 13-year-old from Lahore. Respond kindly and wisely." | |
# β Streaming response generator | |
async def generate_response_chunks(prompt: str): | |
qwen_prompt = ( | |
f"<|im_start|>system\n{SYSTEM_PROMPT}<|im_end|>\n" | |
f"<|im_start|>user\n{prompt}<|im_end|>\n" | |
f"<|im_start|>assistant\n" | |
) | |
inputs = tokenizer(qwen_prompt, return_tensors="pt").to(device) | |
outputs = model.generate( | |
**inputs, | |
max_new_tokens=256, | |
do_sample=True, | |
temperature=0.7, | |
top_p=0.9, | |
pad_token_id=tokenizer.eos_token_id | |
) | |
full_output = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
reply = full_output.split("<|im_start|>assistant\n")[-1].strip() | |
for word in reply.split(): | |
yield word + " " | |
await asyncio.sleep(0.01) | |
# β API route | |
async def ask(question: Question): | |
return StreamingResponse(generate_response_chunks(question.question), media_type="text/plain") |