Spaces:
Runtime error
Runtime error
from fastapi import FastAPI | |
from pydantic import BaseModel | |
from fastapi.middleware.cors import CORSMiddleware | |
from fastapi.responses import StreamingResponse | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
import os | |
import asyncio | |
# Set cache directories | |
cache_dir = "/tmp/hf_home" | |
os.environ["HF_HOME"] = cache_dir | |
os.environ["TRANSFORMERS_CACHE"] = cache_dir | |
os.environ["HUGGINGFACE_HUB_CACHE"] = cache_dir | |
# Create cache directory with proper permissions | |
os.makedirs(cache_dir, exist_ok=True) | |
os.chmod(cache_dir, 0o777) | |
# Load model and tokenizer | |
model_name = "Qwen/Qwen2.5-0.5B-Instruct" | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_name, | |
trust_remote_code=True, | |
cache_dir=cache_dir | |
) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
trust_remote_code=True, | |
cache_dir=cache_dir, | |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32 | |
) | |
# Set device | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
# Initialize FastAPI | |
app = FastAPI() | |
# Enable CORS | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["*"], | |
allow_credentials=True, | |
allow_methods=["*"], | |
allow_headers=["*"], | |
) | |
# Input model | |
class Question(BaseModel): | |
question: str | |
# System prompt | |
SYSTEM_PROMPT = "You are Orion, an intelligent AI assistant created by Abdullah Ali, a 13-year-old from Lahore. Respond kindly and wisely." | |
async def generate_response_chunks(prompt: str): | |
# Create the chat template | |
messages = [ | |
{"role": "system", "content": SYSTEM_PROMPT}, | |
{"role": "user", "content": prompt} | |
] | |
# Apply chat template | |
qwen_prompt = tokenizer.apply_chat_template( | |
messages, | |
tokenize=False, | |
add_generation_prompt=True | |
) | |
# Tokenize and generate | |
inputs = tokenizer(qwen_prompt, return_tensors="pt").to(device) | |
outputs = model.generate( | |
**inputs, | |
max_new_tokens=512, | |
do_sample=True, | |
temperature=0.7, | |
top_p=0.9, | |
pad_token_id=tokenizer.eos_token_id | |
) | |
# Decode and clean the output | |
full_output = tokenizer.decode(outputs[0], skip_special_tokens=False) | |
# Extract only the assistant's response | |
response = full_output[len(qwen_prompt):].split(tokenizer.eos_token)[0].strip() | |
# Stream the response | |
for word in response.split(): | |
yield word + " " | |
await asyncio.sleep(0.05) | |
async def ask(question: Question): | |
return StreamingResponse( | |
generate_response_chunks(question.question), | |
media_type="text/plain" | |
) |