Spaces:
Runtime error
Runtime error
Update main.py
Browse files
main.py
CHANGED
@@ -2,34 +2,35 @@ from fastapi import FastAPI
|
|
2 |
from pydantic import BaseModel
|
3 |
from fastapi.middleware.cors import CORSMiddleware
|
4 |
from fastapi.responses import StreamingResponse
|
5 |
-
from
|
6 |
-
import
|
7 |
-
import os
|
8 |
import asyncio
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
#
|
11 |
-
|
12 |
-
os.
|
13 |
-
os.environ["TRANSFORMERS_CACHE"] = cache_dir
|
14 |
-
os.environ["HUGGINGFACE_HUB_CACHE"] = cache_dir
|
15 |
|
16 |
-
|
17 |
-
|
|
|
18 |
|
19 |
-
#
|
20 |
-
|
21 |
-
|
22 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, cache_dir=cache_dir)
|
23 |
|
24 |
-
#
|
25 |
-
|
26 |
-
tokenizer.pad_token = tokenizer.eos_token
|
27 |
|
28 |
-
#
|
29 |
-
|
30 |
-
|
31 |
|
32 |
-
#
|
33 |
app = FastAPI()
|
34 |
|
35 |
# Enable CORS
|
@@ -41,57 +42,22 @@ app.add_middleware(
|
|
41 |
allow_headers=["*"],
|
42 |
)
|
43 |
|
|
|
44 |
class Question(BaseModel):
|
45 |
question: str
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
# Combine system prompt and user input
|
55 |
-
input_text = SYSTEM_PROMPT + "\nUser: " + prompt + "\nBot:"
|
56 |
-
new_input_ids = tokenizer.encode(input_text, return_tensors='pt').to(device)
|
57 |
-
|
58 |
-
# Create attention mask (handle case where pad_token_id might be None)
|
59 |
-
attention_mask = torch.ones_like(new_input_ids)
|
60 |
-
|
61 |
-
if chat_history_ids is not None:
|
62 |
-
input_ids = torch.cat([chat_history_ids, new_input_ids], dim=-1)
|
63 |
-
attention_mask = torch.cat([
|
64 |
-
torch.ones_like(chat_history_ids),
|
65 |
-
attention_mask
|
66 |
-
], dim=-1)
|
67 |
-
else:
|
68 |
-
input_ids = new_input_ids
|
69 |
-
|
70 |
-
# Generate response
|
71 |
-
output_ids = model.generate(
|
72 |
-
input_ids,
|
73 |
-
attention_mask=attention_mask,
|
74 |
-
max_new_tokens=200,
|
75 |
-
do_sample=True,
|
76 |
-
top_p=0.9,
|
77 |
-
temperature=0.7,
|
78 |
-
pad_token_id=tokenizer.eos_token_id
|
79 |
-
)
|
80 |
-
|
81 |
-
# Update chat history
|
82 |
-
chat_history_ids = output_ids
|
83 |
-
|
84 |
-
# Decode only the new tokens
|
85 |
-
response = tokenizer.decode(output_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
|
86 |
-
|
87 |
-
# Stream the response
|
88 |
-
for word in response.split():
|
89 |
-
yield word + " "
|
90 |
-
await asyncio.sleep(0.03)
|
91 |
|
|
|
92 |
@app.post("/ask")
|
93 |
async def ask(question: Question):
|
94 |
return StreamingResponse(
|
95 |
-
|
96 |
media_type="text/plain"
|
97 |
-
)
|
|
|
2 |
from pydantic import BaseModel
|
3 |
from fastapi.middleware.cors import CORSMiddleware
|
4 |
from fastapi.responses import StreamingResponse
|
5 |
+
from hugchat import hugchat
|
6 |
+
from hugchat.login import Login
|
|
|
7 |
import asyncio
|
8 |
+
import os
|
9 |
+
from dotenv import load_dotenv
|
10 |
+
|
11 |
+
# Load environment variables from .env file
|
12 |
+
load_dotenv()
|
13 |
|
14 |
+
# Read credentials from environment variables
|
15 |
+
EMAIL = os.getenv("EMAIL")
|
16 |
+
PASSWD = os.getenv("PASSWD")
|
|
|
|
|
17 |
|
18 |
+
# Cookie storage
|
19 |
+
cookie_path_dir = "./cookies/"
|
20 |
+
os.makedirs(cookie_path_dir, exist_ok=True)
|
21 |
|
22 |
+
# HugChat login
|
23 |
+
sign = Login(EMAIL, PASSWD)
|
24 |
+
cookies = sign.login(cookie_dir_path=cookie_path_dir, save_cookies=True)
|
|
|
25 |
|
26 |
+
# Create chatbot instance
|
27 |
+
chatbot = hugchat.ChatBot(cookies=cookies.get_dict())
|
|
|
28 |
|
29 |
+
# Optional: Use assistant ID
|
30 |
+
ASSISTANT_ID = "66017fca58d60bd7d5c5c26c" # Replace if needed
|
31 |
+
chatbot.new_conversation(assistant=ASSISTANT_ID, switch_to=True)
|
32 |
|
33 |
+
# FastAPI setup
|
34 |
app = FastAPI()
|
35 |
|
36 |
# Enable CORS
|
|
|
42 |
allow_headers=["*"],
|
43 |
)
|
44 |
|
45 |
+
# Request model
|
46 |
class Question(BaseModel):
|
47 |
question: str
|
48 |
|
49 |
+
# Token stream function
|
50 |
+
async def generate_response_stream(prompt: str):
|
51 |
+
for chunk in chatbot.chat(prompt, stream=True):
|
52 |
+
token = chunk.get("token", "")
|
53 |
+
if token:
|
54 |
+
yield token
|
55 |
+
await asyncio.sleep(0.02)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
+
# Endpoint
|
58 |
@app.post("/ask")
|
59 |
async def ask(question: Question):
|
60 |
return StreamingResponse(
|
61 |
+
generate_response_stream(question.question),
|
62 |
media_type="text/plain"
|
63 |
+
)
|