File size: 1,705 Bytes
f7c0abb
b9e465f
fa8e2ce
dc76d86
d0fc55f
f7c0abb
 
 
dc76d86
 
9ab6d04
dc76d86
 
fa8e2ce
6025f1c
 
9ab6d04
6025f1c
 
 
f7c0abb
d0fc55f
f7c0abb
d1cb607
f7c0abb
 
9ab6d04
6025f1c
 
d0fc55f
f7c0abb
 
d0fc55f
045ef7e
 
f7c0abb
 
045ef7e
9ab6d04
f7c0abb
 
dc76d86
 
b9e465f
9ab6d04
 
 
fa8e2ce
dc76d86
93c4b1f
7a83ce6
20d0b59
387e225
1a836e3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import os
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from openai import AsyncOpenAI

app = FastAPI()

class GenerateRequest(BaseModel):
    prompt: str
    model: str  # Model is required, no default

async def generate_ai_response(prompt: str, model: str):
    token = os.getenv("GITHUB_TOKEN")
    if not token:
        raise HTTPException(status_code=500, detail="GitHub token not configured")
    
    endpoint = "https://models.github.ai/inference"
    client = AsyncOpenAI(base_url=endpoint, api_key=token)

    try:
        stream = await client.chat.completions.create(
            messages=[
                {"role": "system", "content": "You are a helpful assistant."},
                {"role": "user", "content": prompt}
            ],
            model=model,
            temperature=1.0,
            top_p=1.0,
            stream=True
        )

        async for chunk in stream:
            if chunk.choices and chunk.choices[0].delta.content:
                yield chunk.choices[0].delta.content

    except Exception as err:
        yield f"Error: {str(err)}"
        raise HTTPException(status_code=500, detail=f"AI generation failed: {str(err)}")

@app.post("/generate")
async def generate_response(request: GenerateRequest):
    if not request.prompt:
        raise HTTPException(status_code=400, detail="Prompt cannot be empty")
    if not request.model:
        raise HTTPException(status_code=400, detail="Model must be specified")
    
    return StreamingResponse(
        generate_ai_response(request.prompt, request.model),
        media_type="text/event-stream"
    )

def get_app():
    return app