Spaces:
Sleeping
Sleeping
File size: 4,574 Bytes
f7c0abb f9d8346 19fe1fe fa8e2ce 19fe1fe d0fc55f 19fe1fe f7c0abb f9d8346 f7c0abb ba4e0a8 19fe1fe ba4e0a8 19fe1fe ba4e0a8 fa8e2ce f9d8346 ba4e0a8 19fe1fe 6025f1c f9d8346 6025f1c 2372d93 ba4e0a8 6025f1c 603790a ba4e0a8 d0fc55f f7c0abb 19fe1fe f7c0abb 9ab6d04 6025f1c ba4e0a8 f7c0abb d0fc55f 045ef7e f7c0abb f9d8346 045ef7e 19fe1fe f7c0abb 19fe1fe ba4e0a8 19fe1fe ba4e0a8 19fe1fe ba4e0a8 19fe1fe f9d8346 b9e465f 9ab6d04 19fe1fe f9d8346 19fe1fe fa8e2ce ba4e0a8 93c4b1f 7a83ce6 20d0b59 387e225 19fe1fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
import os
import logging
from fastapi import FastAPI, HTTPException, Query
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from openai import AsyncOpenAI
from typing import Optional
# Configure logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
app = FastAPI()
# Define valid models (replace with actual models supported by your AI server)
VALID_MODELS = ["default-model", "another-model"] # Update this list
class GenerateRequest(BaseModel):
prompt: str
publisher: Optional[str] = None # Allow publisher in the body if needed
async def generate_ai_response(prompt: str, model: str, publisher: Optional[str]):
logger.debug(f"Received prompt: {prompt}, model: {model}, publisher: {publisher}")
# Configuration for AI endpoint
token = os.getenv("GITHUB_TOKEN")
endpoint = os.getenv("AI_SERVER_URL", "https://models.github.ai/inference")
default_publisher = os.getenv("DEFAULT_PUBLISHER", "abdullahalioo") # Fallback publisher
if not token:
logger.error("GitHub token not configured")
raise HTTPException(status_code=500, detail="GitHub token not configured")
# Use provided publisher or fallback to environment variable
final_publisher = publisher or default_publisher
if not final_publisher:
logger.error("Publisher is required")
raise HTTPException(status_code=400, detail="Publisher is required")
# Validate model
if model not in VALID_MODELS:
logger.error(f"Invalid model: {model}. Valid models: {VALID_MODELS}")
raise HTTPException(status_code=400, detail=f"Invalid model. Valid models: {VALID_MODELS}")
logger.debug(f"Using endpoint: {endpoint}, publisher: {final_publisher}")
client = AsyncOpenAI(base_url=endpoint, api_key=token)
try:
# Include publisher in the request payload (modify as needed based on AI server requirements)
stream = await client.chat.completions.create(
messages=[
{"role": "system", "content": "You are a helpful assistant named Orion, created by Abdullah Ali"},
{"role": "user", "content": prompt}
],
model=model,
temperature=1.0,
top_p=1.0,
stream=True,
extra_body={"publisher": final_publisher} # Add publisher to extra_body
)
async for chunk in stream:
if chunk.choices and chunk.choices[0].delta.content:
yield chunk.choices[0].delta.content
except Exception as err:
logger.error(f"AI generation failed: {str(err)}")
yield f"Error: {str(err)}"
raise HTTPException(status_code=500, detail=f"AI generation failed: {str(err)}")
@app.post("/generate", summary="Generate AI response", response_description="Streaming AI response")
async def generate_response(
model: str = Query("default-model", description="The AI model to use"),
prompt: Optional[str] = Query(None, description="The input text prompt for the AI"),
publisher: Optional[str] = Query(None, description="Publisher identifier (optional, defaults to DEFAULT_PUBLISHER env var)"),
request: Optional[GenerateRequest] = None
):
"""
Generate a streaming AI response based on the provided prompt, model, and publisher.
- **model**: The AI model to use (e.g., default-model)
- **prompt**: The input text prompt for the AI (query param or body)
- **publisher**: The publisher identifier (optional, defaults to DEFAULT_PUBLISHER env var)
"""
logger.debug(f"Request received - model: {model}, prompt: {prompt}, publisher: {publisher}, body: {request}")
# Determine prompt source: query parameter or request body
final_prompt = prompt if prompt is not None else (request.prompt if request is not None else None)
# Determine publisher source: query parameter or request body
final_publisher = publisher if publisher is not None else (request.publisher if request is not None else None)
if not final_prompt or not final_prompt.strip():
logger.error("Prompt cannot be empty")
raise HTTPException(status_code=400, detail="Prompt cannot be empty")
if not model or not model.strip():
logger.error("Model cannot be empty")
raise HTTPException(status_code=400, detail="Model cannot be empty")
return StreamingResponse(
generate_ai_response(final_prompt, model, final_publisher),
media_type="text/event-stream"
)
def get_app():
return app
|