Spaces:
Sleeping
Sleeping
import os | |
from fastapi import FastAPI, HTTPException, Query | |
from fastapi.responses import StreamingResponse | |
from pydantic import BaseModel | |
from openai import AsyncOpenAI | |
from typing import Optional | |
app = FastAPI() | |
class GenerateRequest(BaseModel): | |
prompt: str | |
async def generate_ai_response(prompt: str, model: str): | |
# Configuration for AI endpoint | |
token = os.getenv("GITHUB_TOKEN") | |
endpoint = os.getenv("AI_SERVER_URL", "https://models.github.ai/inference") # Default fallback | |
if not token: | |
raise HTTPException(status_code=500, detail="GitHub token not configured") | |
client = AsyncOpenAI(base_url=endpoint, api_key=token) | |
try | |
stream = await client.chat.completions.create( | |
messages=[ | |
{"role": "system", "content": "You are a helpful assistant named Orion, created by Abdullah Ali"}, | |
{"role": "user", "content": prompt} | |
], | |
model=model, | |
temperature=1.0, | |
top_p=1.0, | |
stream=True | |
) | |
async for chunk in stream: | |
if chunk.choices and chunk.choices[0].delta.content: | |
yield chunk.choices[0].delta.content | |
except Exception as err: | |
yield f"Error: {str(err)}" | |
raise HTTPException(status_code=500, detail=f"AI generation failed: {str(err)}") | |
async def generate_response( | |
model: str = Query("default-model", description="The AI model to use"), | |
prompt: Optional[str] = Query(None, description="The input text prompt for the AI"), | |
request: Optional[GenerateRequest] = None | |
): | |
""" | |
Generate a streaming AI response based on the provided prompt and model. | |
- **model**: The AI model to use (specified as a query parameter, defaults to default-model) | |
- **prompt**: The input text prompt for the AI (can be in query parameter or request body) | |
""" | |
# Determine prompt source: query parameter or request body | |
final_prompt = prompt if prompt is not None else (request.prompt if request is not None else None) | |
if not final_prompt or not final_prompt.strip(): | |
raise HTTPException(status_code=400, detail="Prompt cannot be empty") | |
if not model or not model.strip(): | |
raise HTTPException(status_code=400, detail="Model cannot be empty") | |
return StreamingResponse( | |
generate_ai_response(final_prompt, model), | |
media_type="text/event-stream" | |
) | |
def get_app(): | |
return app | |