import os from fastapi import FastAPI, HTTPException from fastapi.responses import StreamingResponse from pydantic import BaseModel from openai import AsyncOpenAI app = FastAPI() class GenerateRequest(BaseModel): prompt: str model: str # Model is required, no default async def generate_ai_response(prompt: str, model: str): token = os.getenv("GITHUB_TOKEN") if not token: raise HTTPException(status_code=500, detail="GitHub token not configured") endpoint = "https://models.github.ai/inference" client = AsyncOpenAI(base_url=endpoint, api_key=token) try: stream = await client.chat.completions.create( messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt} ], model=model, temperature=1.0, top_p=1.0, stream=True ) async for chunk in stream: if chunk.choices and chunk.choices[0].delta.content: yield chunk.choices[0].delta.content except Exception as err: yield f"Error: {str(err)}" raise HTTPException(status_code=500, detail=f"AI generation failed: {str(err)}") @app.post("/generate") async def generate_response(request: GenerateRequest): if not request.prompt: raise HTTPException(status_code=400, detail="Prompt cannot be empty") if not request.model: raise HTTPException(status_code=400, detail="Model must be specified") return StreamingResponse( generate_ai_response(request.prompt, request.model), media_type="text/event-stream" ) def get_app(): return app