import os from fastapi import FastAPI, HTTPException from fastapi.responses import StreamingResponse from openai import AsyncOpenAI from pydantic import BaseModel import asyncio # Initialize FastAPI app app = FastAPI() # Define request body model for the prompt class PromptRequest(BaseModel): prompt: str # Initialize OpenAI client token = os.getenv("GITHUB_TOKEN") if not token: raise ValueError("GITHUB_TOKEN environment variable not set") endpoint = "https://models.github.ai/inference" model = "openai/gpt-4.1-mini" client = AsyncOpenAI(base_url=endpoint, api_key=token) # Async generator to stream chunks async def stream_response(prompt: str): try: # Create streaming chat completion stream = await client.chat.completions.create( messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt} ], temperature=1.0, top_p=1.0, model=model, stream=True ) # Yield each chunk as it arrives async for chunk in stream: if chunk.choices and len(chunk.choices) > 0: content = chunk.choices[0].delta.content or "" yield content except Exception as err: yield f"Error: {err}" # Endpoint to handle prompt and stream response @app.post("/generate") async def generate_response(request: PromptRequest): try: # Return a StreamingResponse with the async generator return StreamingResponse( stream_response(request.prompt), media_type="text/plain" ) except Exception as err: raise HTTPException(status_code=500, detail=f"Server error: {err}")