import os import logging from fastapi import FastAPI, HTTPException, Query from fastapi.responses import StreamingResponse from pydantic import BaseModel from openai import AsyncOpenAI from typing import Optional # Configure logging logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger(__name__) app = FastAPI() class GenerateRequest(BaseModel): prompt: str async def generate_ai_response(prompt: str, model: str): logger.debug(f"Received prompt: {prompt}, model: {model}") token = os.getenv("GITHUB_TOKEN") endpoint = os.getenv("AI_SERVER_URL", "https://models.github.ai/inference") if not token: logger.error("GitHub token not configured") raise HTTPException(status_code=500, detail="GitHub token not configured") logger.debug(f"Using endpoint: {endpoint}") client = AsyncOpenAI(base_url=endpoint, api_key=token) try: stream = await client.chat.completions.create( messages=[ {"role": "system", "content": "You are a helpful assistant named Orion, created by Abdullah Ali"}, {"role": "user", "content": prompt} ], model=model, temperature=1.0, top_p=1.0, stream=True ) async for chunk in stream: if chunk.choices and chunk.choices[0].delta.content: yield chunk.choices[0].delta.content except Exception as err: logger.error(f"AI generation failed: {str(err)}") yield f"Error: {str(err)}" raise HTTPException(status_code=500, detail=f"AI generation failed: {str(err)}") @app.post("/generate", summary="Generate AI response", response_description="Streaming AI response") async def generate_response( model: str = Query("default-model", description="The AI model to use"), prompt: Optional[str] = Query(None, description="The input text prompt for the AI"), request: Optional[GenerateRequest] = None ): logger.debug(f"Request received - model: {model}, prompt: {prompt}, body: {request}") final_prompt = prompt if prompt is not None else (request.prompt if request is not None else None) if not final_prompt or not final_prompt.strip(): logger.error("Prompt cannot be empty") raise HTTPException(status_code=400, detail="Prompt cannot be empty") if not model or not model.strip(): logger.error("Model cannot be empty") raise HTTPException(status_code=400, detail="Model cannot be empty") return StreamingResponse( generate_ai_response(final_prompt, model), media_type="text/event-stream" ) def get_app(): return app