Spaces:
Running
Running
import torch | |
import joblib | |
import numpy as np | |
import pandas as pd | |
import gradio as gr | |
from nltk.data import load as nltk_load | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
NLTK = nltk_load('data/english.pickle') | |
sent_cut_en = NLTK.tokenize | |
clf = joblib.load(f'data/gpt2-large-model', 'rb') | |
model_id = 'gpt2-large' | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = AutoModelForCausalLM.from_pretrained(model_id) | |
CROSS_ENTROPY = torch.nn.CrossEntropyLoss(reduction='none') | |
def gpt2_features(text, tokenizer, model, sent_cut): | |
# Tokenize | |
input_max_length = tokenizer.model_max_length - 2 | |
token_ids, offsets = list(), list() | |
sentences = sent_cut(text) | |
for s in sentences: | |
tokens = tokenizer.tokenize(s) | |
ids = tokenizer.convert_tokens_to_ids(tokens) | |
difference = len(token_ids) + len(ids) - input_max_length | |
if difference > 0: | |
ids = ids[:-difference] | |
offsets.append((len(token_ids), len(token_ids) + len(ids))) | |
token_ids.extend(ids) | |
if difference >= 0: | |
break | |
input_ids = torch.tensor([tokenizer.bos_token_id] + token_ids) | |
logits = model(input_ids).logits | |
# Shift so that n-1 predict n | |
shift_logits = logits[:-1].contiguous() | |
shift_target = input_ids[1:].contiguous() | |
loss = CROSS_ENTROPY(shift_logits, shift_target) | |
all_probs = torch.softmax(shift_logits, dim=-1) | |
sorted_ids = torch.argsort(all_probs, dim=-1, descending=True) # stable=True | |
expanded_tokens = shift_target.unsqueeze(-1).expand_as(sorted_ids) | |
indices = torch.where(sorted_ids == expanded_tokens) | |
rank = indices[-1] | |
counter = [ | |
rank < 10, | |
(rank >= 10) & (rank < 100), | |
(rank >= 100) & (rank < 1000), | |
rank >= 1000 | |
] | |
counter = [c.long().sum(-1).item() for c in counter] | |
# compute different-level ppl | |
text_ppl = loss.mean().exp().item() | |
sent_ppl = list() | |
for start, end in offsets: | |
nll = loss[start: end].sum() / (end - start) | |
sent_ppl.append(nll.exp().item()) | |
max_sent_ppl = max(sent_ppl) | |
sent_ppl_avg = sum(sent_ppl) / len(sent_ppl) | |
if len(sent_ppl) > 1: | |
sent_ppl_std = torch.std(torch.tensor(sent_ppl)).item() | |
else: | |
sent_ppl_std = 0 | |
mask = torch.tensor([1] * loss.size(0)) | |
step_ppl = loss.cumsum(dim=-1).div(mask.cumsum(dim=-1)).exp() | |
max_step_ppl = step_ppl.max(dim=-1)[0].item() | |
step_ppl_avg = step_ppl.sum(dim=-1).div(loss.size(0)).item() | |
if step_ppl.size(0) > 1: | |
step_ppl_std = step_ppl.std().item() | |
else: | |
step_ppl_std = 0 | |
ppls = [ | |
text_ppl, max_sent_ppl, sent_ppl_avg, sent_ppl_std, | |
max_step_ppl, step_ppl_avg, step_ppl_std | |
] | |
return ppls + counter # type: ignore | |
def predict(features, classifier, id_to_label): | |
x = np.asarray([features]) | |
pred = classifier.predict(x)[0] | |
prob = classifier.predict_proba(x)[0, pred] | |
return [id_to_label[pred], prob] | |
def predict(text): | |
with torch.no_grad(): | |
feats = gpt2_features(text, tokenizer, model, sent_cut_en) | |
out = predict(*feats, clf, ['Human Written', 'LLM Generated']) | |
return out | |
with gr.Blocks() as demo: | |
gr.Markdown( | |
""" | |
## ChatGPT Detector 🔬 (Linguistic version / 语言学版) | |
Visit our project on Github: [chatgpt-comparison-detection project](https://github.com/Hello-SimpleAI/chatgpt-comparison-detection)<br> | |
欢迎在 Github 上关注我们的 [ChatGPT 对比与检测项目](https://github.com/Hello-SimpleAI/chatgpt-comparison-detection)<br> | |
We provide three kinds of detectors, all in Bilingual / 我们提供了三个版本的检测器,且都支持中英文: | |
- [QA version / 问答版](https://www.modelscope.cn/studios/simpleai/chatgpt-detector-qa)<br> | |
detect whether an **answer** is generated by ChatGPT for certain **question**, using PLM-based classifiers / 判断某个**问题的回答**是否由ChatGPT生成,使用基于PTM的分类器来开发; | |
- [Sinlge-text version / 独立文本版](https://www.modelscope.cn/studios/simpleai/chatgpt-detector-single)<br> | |
detect whether a piece of text is ChatGPT generated, using PLM-based classifiers / 判断**单条文本**是否由ChatGPT生成,使用基于PTM的分类器来开发; | |
- [**Linguistic version / 语言学版** (👈 Current / 当前使用)](https://www.modelscope.cn/studios/simpleai/chatgpt-detector-ling)<br> | |
detect whether a piece of text is ChatGPT generated, using linguistic features / 判断**单条文本**是否由ChatGPT生成,使用基于语言学特征的模型来开发; | |
""" | |
) | |
gr.Markdown( | |
""" | |
## Introduction: | |
Two Logistic regression models trained with two kinds of features: | |
1. [GLTR](https://aclanthology.org/P19-3019) Test-2, Language model predict token rank top-k buckets, top 10, 10-100, 100-1000, 1000+. | |
2. PPL-based, text ppl, sentence ppl, etc. | |
English LM is [GPT2-small](https://huggingface.co/gpt2). | |
Note: Providing more text to the `Text` box can make the prediction more accurate! | |
""" | |
) | |
a1 = gr.Textbox( | |
lines=5, label='Text', | |
value="There are a few things that can help protect your credit card information from being misused when you give it to a restaurant or any other business:\n\nEncryption: Many businesses use encryption to protect your credit card information when it is being transmitted or stored. This means that the information is transformed into a code that is difficult for anyone to read without the right key." | |
) | |
button1 = gr.Button("🤖 Predict!") | |
gr.Markdown("GLTR") | |
label1_gltr = gr.Textbox(lines=1, label='GLTR Predicted Label 🎃') | |
score1_gltr = gr.Textbox(lines=1, label='GLTR Probability') | |
button1.click(predict, inputs=[a1], outputs=[label1_gltr, score1_gltr]) | |
demo.launch() |