Spaces:
Runtime error
Runtime error
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import requests | |
from bs4 import BeautifulSoup | |
from bs4.element import Comment | |
def tag_visible(element): | |
if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: | |
return False | |
if isinstance(element, Comment): | |
return False | |
return True | |
def get_text_from_url(url): | |
response = requests.get(url) | |
soup = BeautifulSoup(response.text, 'html.parser') | |
texts = soup.find_all(text=True) | |
visible_texts = filter(tag_visible, texts) | |
return "\n".join(t.strip() for t in visible_texts) | |
# Get the text from your homepage (and any additional extensions as needed) | |
text_list = [] | |
homepage_url = "https://sites.google.com/view/abhilashnandy/home/" | |
extensions = ["", "pmrf-profile-page"] | |
for ext in extensions: | |
url_text = get_text_from_url(homepage_url + ext) | |
text_list.append(url_text) | |
# Optionally, repeat for sub-links if necessary | |
# Build a system message with the homepage info | |
SYSTEM_MESSAGE = ( | |
"You are a QA chatbot to answer queries (in less than 30 words) on my homepage that has the following information -\n\n" | |
+ "\n\n".join(text_list) | |
+ "\n\n" | |
) | |
# Use a model that works well on CPU, has a decently long context, and low inference latency. | |
# Here we choose a small chat-optimized model: | |
client = InferenceClient("TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF") | |
def respond(message, history: list[tuple[str, str]], system_message=SYSTEM_MESSAGE, | |
max_tokens=140, temperature=0.7, top_p=0.95): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if len(val) >= 1: | |
messages.append({"role": "user", "content": "Question: " + val[0]}) | |
if len(val) >= 2: | |
messages.append({"role": "assistant", "content": "Answer: " + val[1]}) | |
messages.append({"role": "user", "content": message}) | |
try: | |
response = client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
# stream=True, # Uncomment to enable streaming | |
) | |
return response.choices[0].message["content"] | |
except Exception as e: | |
print(f"An error occurred: {e}") | |
return str(e) | |
initial_message = [("user", "Yo who dis Abhilash?")] | |
markdown_note = "## Ask Anything About Me! (Might show a tad bit of hallucination!)" | |
demo = gr.Blocks() | |
with demo: | |
gr.Markdown(markdown_note) | |
gr.ChatInterface( | |
fn=respond, | |
examples=["Yo who dis Abhilash?", "What is Abhilash's most recent publication?"], | |
additional_inputs=[ | |
# You can add extra Gradio components here if needed. | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() |