Spaces:
Runtime error
Runtime error
| import csv | |
| import pandas as pd | |
| import numpy as np | |
| import os | |
| def write_to_csv_departments(time,teachingscore,teaching,courseContentscore,courseContent, | |
| examinationscore,examination,labWorkscore,labWork,libraryFacilitiesscore, | |
| libraryFacilities,extraCurricularscore,extraCurricular): | |
| csv_file_path = 'dataset/database.csv' | |
| df = pd.read_csv(csv_file_path) | |
| # Creating a dictionary for the new row | |
| new_row = {'Timestamp': time, 'teachingscore': teachingscore, 'teaching': teaching, | |
| 'coursecontentscore': courseContentscore, 'coursecontent': courseContent, | |
| 'examinationscore': examinationscore, 'examination': examination, | |
| 'labworkscore': labWorkscore, 'labwork': labWork, 'libraryfacilitiesscore': libraryFacilitiesscore, | |
| 'libraryfacilities': libraryFacilities, 'extracurricularscore': extraCurricularscore, | |
| 'extracurricular': extraCurricular, 'Email Address': ''} | |
| # Convert the new row to a DataFrame | |
| new_data = pd.DataFrame(new_row, index=[0]) | |
| # Append the new data to the existing DataFrame | |
| df2 = pd.concat([df, new_data], ignore_index=True) | |
| # Append the new data to the existing DataFrame | |
| # df = df.append(new_data, ignore_index=True) | |
| # print(df2) | |
| df2.to_csv(csv_file_path, mode='w', index=False) | |
| def write_to_csv_teachers(teacher1,teacher1score,teacher2,teacher2score,teacher3,teacher3score, | |
| teacher4,teacher4score,teacher5,teacher5score,teacher6,teacher6score): | |
| csv_file_path = 'dataset/teacherdb.csv' | |
| # Read the existing headers | |
| df = pd.read_csv(csv_file_path) | |
| header = df.columns.tolist() | |
| # Create a dictionary for the new row | |
| new_row = {'teacher1': teacher1, 'teacher1score': teacher1score, | |
| 'teacher2': teacher2, 'teacher2score': teacher2score, | |
| 'teacher3': teacher3, 'teacher3score': teacher3score, | |
| 'teacher4': teacher4, 'teacher4score': teacher4score, | |
| 'teacher5': teacher5, 'teacher5score': teacher5score, | |
| 'teacher6': teacher6, 'teacher6score': teacher6score} | |
| # Concat the new row to the DataFrame | |
| df2 = pd.concat([df, new_data], ignore_index=True) | |
| # Append the new data to the existing DataFrame | |
| # df = df.append(new_data, ignore_index=True) | |
| # print(df2) | |
| df2.to_csv(csv_file_path, mode='w', index=False) | |
| def get_counts(): | |
| csv_file_path = 'dataset/database.csv' | |
| df = pd.read_csv(csv_file_path) | |
| index = df.index | |
| no_of_students = len(index) | |
| total_feedbacks = len(index)*6 | |
| df1 = df.groupby('teachingscore').count()[['teaching']] | |
| teaching_negative_count = df1['teaching'][-1] | |
| teaching_neutral_count = df1['teaching'][0] | |
| teaching_positive_count = df1['teaching'][1] | |
| df1 = df.groupby('coursecontentscore').count()[['coursecontent']] | |
| coursecontent_negative_count = df1['coursecontent'][-1] | |
| coursecontent_neutral_count = df1['coursecontent'][0] | |
| coursecontent_positive_count = df1['coursecontent'][1] | |
| df1 = df.groupby('examinationscore').count()[['examination']] | |
| examination_negative_count = df1['examination'][-1] | |
| examination_neutral_count = df1['examination'][0] | |
| examination_positive_count = df1['examination'][1] | |
| df1 = df.groupby('labworkscore').count()[['labwork']] | |
| labwork_negative_count = df1['labwork'][-1] | |
| labwork_neutral_count = df1['labwork'][0] | |
| labwork_positive_count = df1['labwork'][1] | |
| df1 = df.groupby('libraryfacilitiesscore').count()[['libraryfacilities']] | |
| libraryfacilities_negative_count = df1['libraryfacilities'][-1] | |
| libraryfacilities_neutral_count = df1['libraryfacilities'][0] | |
| libraryfacilities_positive_count = df1['libraryfacilities'][1] | |
| df1 = df.groupby('extracurricularscore').count()[['extracurricular']] | |
| extracurricular_negative_count = df1['extracurricular'][-1] | |
| extracurricular_neutral_count = df1['extracurricular'][0] | |
| extracurricular_positive_count = df1['extracurricular'][1] | |
| total_positive_feedbacks = teaching_positive_count + coursecontent_positive_count + examination_positive_count + labwork_positive_count + libraryfacilities_positive_count + extracurricular_positive_count | |
| total_neutral_feedbacks = teaching_neutral_count + coursecontent_neutral_count + examination_neutral_count + labwork_neutral_count + libraryfacilities_neutral_count + extracurricular_neutral_count | |
| total_negative_feedbacks = teaching_negative_count + coursecontent_negative_count + examination_negative_count +labwork_negative_count + libraryfacilities_negative_count + extracurricular_negative_count | |
| li = [teaching_positive_count,teaching_negative_count,teaching_neutral_count, | |
| coursecontent_positive_count,coursecontent_negative_count,coursecontent_neutral_count, | |
| examination_positive_count,examination_negative_count,examination_neutral_count, | |
| labwork_positive_count,labwork_negative_count,labwork_neutral_count, | |
| libraryfacilities_positive_count,libraryfacilities_negative_count,libraryfacilities_neutral_count, | |
| extracurricular_positive_count,extracurricular_negative_count,extracurricular_neutral_count] | |
| return no_of_students,\ | |
| int(round(total_positive_feedbacks / total_feedbacks * 100)),\ | |
| int(round(total_negative_feedbacks / total_feedbacks * 100)),\ | |
| int(round(total_neutral_feedbacks / total_feedbacks * 100)),\ | |
| li | |
| def get_tables(): | |
| csv_file_path = 'dataset/database.csv' | |
| df = pd.read_csv(csv_file_path) | |
| df = df.tail(5) | |
| return [df.to_html(classes='data')] | |
| def get_titles(): | |
| csv_file_path = 'dataset/database.csv' | |
| df = pd.read_csv('dataset/database.csv') | |
| return df.columns.values | |