Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -24,6 +24,7 @@ from vocoder.bigvgan.models import VocoderBigVGAN
|
|
| 24 |
import soundfile
|
| 25 |
# from pytorch_memlab import LineProfiler,profile
|
| 26 |
import gradio
|
|
|
|
| 27 |
|
| 28 |
def load_model_from_config(config, ckpt = None, verbose=True):
|
| 29 |
model = instantiate_from_config(config.model)
|
|
@@ -50,7 +51,7 @@ def load_model_from_config(config, ckpt = None, verbose=True):
|
|
| 50 |
|
| 51 |
|
| 52 |
class GenSamples:
|
| 53 |
-
def __init__(self,sampler,model,outpath,vocoder = None,save_mel = True,save_wav = True, original_inference_steps=None) -> None:
|
| 54 |
self.sampler = sampler
|
| 55 |
self.model = model
|
| 56 |
self.outpath = outpath
|
|
@@ -61,29 +62,33 @@ class GenSamples:
|
|
| 61 |
self.save_wav = save_wav
|
| 62 |
self.channel_dim = self.model.channels
|
| 63 |
self.original_inference_steps = original_inference_steps
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
def gen_test_sample(self,prompt,mel_name = None,wav_name = None):# prompt is {'ori_caption':’xxx‘,'struct_caption':'xxx'}
|
| 66 |
uc = None
|
| 67 |
record_dicts = []
|
| 68 |
# if os.path.exists(os.path.join(self.outpath,mel_name+f'_0.npy')):
|
| 69 |
# return record_dicts
|
| 70 |
-
|
| 71 |
-
|
|
|
|
| 72 |
|
| 73 |
for n in range(1):# trange(self.opt.n_iter, desc="Sampling"):
|
| 74 |
for k,v in prompt.items():
|
| 75 |
-
prompt[k] =
|
| 76 |
c = self.model.get_learned_conditioning(prompt)# shape:[1,77,1280],即还没有变成句子embedding,仍是每个单词的embedding
|
| 77 |
if self.channel_dim>0:
|
| 78 |
shape = [self.channel_dim, 20, 312] # (z_dim, 80//2^x, 848//2^x)
|
| 79 |
else:
|
| 80 |
shape = [20, 312]
|
| 81 |
-
samples_ddim, _ = self.sampler.sample(S=
|
| 82 |
conditioning=c,
|
| 83 |
-
batch_size=
|
| 84 |
shape=shape,
|
| 85 |
verbose=False,
|
| 86 |
-
guidance_scale=
|
| 87 |
original_inference_steps=self.original_inference_steps
|
| 88 |
)
|
| 89 |
x_samples_ddim = self.model.decode_first_stage(samples_ddim)
|
|
@@ -103,7 +108,9 @@ class GenSamples:
|
|
| 103 |
return record_dicts
|
| 104 |
|
| 105 |
@spaces.GPU(enable_queue=True)
|
| 106 |
-
def infer(ori_prompt):
|
|
|
|
|
|
|
| 107 |
|
| 108 |
prompt = dict(ori_caption=ori_prompt,struct_caption=f'<{ori_prompt}& all>')
|
| 109 |
|
|
@@ -124,7 +131,7 @@ def infer(ori_prompt):
|
|
| 124 |
vocoder = VocoderBigVGAN("./model/vocoder",device)
|
| 125 |
|
| 126 |
|
| 127 |
-
generator = GenSamples(sampler,model,"results/test",vocoder,save_mel = False,save_wav = True, original_inference_steps=config.model.params.num_ddim_timesteps)
|
| 128 |
csv_dicts = []
|
| 129 |
|
| 130 |
with torch.no_grad():
|
|
@@ -135,15 +142,61 @@ def infer(ori_prompt):
|
|
| 135 |
print(f"Your samples are ready and waiting four you here: \nresults/test \nEnjoy.")
|
| 136 |
return "results/test/"+wav_name+"_0.wav"
|
| 137 |
|
| 138 |
-
def my_inference_function(text_prompt):
|
| 139 |
-
file_path = infer(text_prompt)
|
| 140 |
return file_path
|
| 141 |
|
| 142 |
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
)
|
| 149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
import soundfile
|
| 25 |
# from pytorch_memlab import LineProfiler,profile
|
| 26 |
import gradio
|
| 27 |
+
import gradio as gr
|
| 28 |
|
| 29 |
def load_model_from_config(config, ckpt = None, verbose=True):
|
| 30 |
model = instantiate_from_config(config.model)
|
|
|
|
| 51 |
|
| 52 |
|
| 53 |
class GenSamples:
|
| 54 |
+
def __init__(self,sampler,model,outpath,vocoder = None,save_mel = True,save_wav = True, original_inference_steps=None, ddim_steps=2, scale=5, num_samples=1) -> None:
|
| 55 |
self.sampler = sampler
|
| 56 |
self.model = model
|
| 57 |
self.outpath = outpath
|
|
|
|
| 62 |
self.save_wav = save_wav
|
| 63 |
self.channel_dim = self.model.channels
|
| 64 |
self.original_inference_steps = original_inference_steps
|
| 65 |
+
self.ddim_steps = ddim_steps
|
| 66 |
+
self.scale = scale
|
| 67 |
+
self.num_samples = num_samples
|
| 68 |
|
| 69 |
def gen_test_sample(self,prompt,mel_name = None,wav_name = None):# prompt is {'ori_caption':’xxx‘,'struct_caption':'xxx'}
|
| 70 |
uc = None
|
| 71 |
record_dicts = []
|
| 72 |
# if os.path.exists(os.path.join(self.outpath,mel_name+f'_0.npy')):
|
| 73 |
# return record_dicts
|
| 74 |
+
if self.scale != 1.0:
|
| 75 |
+
emptycap = {'ori_caption':self.num_samples*[""],'struct_caption':self.num_samples*[""]}
|
| 76 |
+
uc = self.model.get_learned_conditioning(emptycap)
|
| 77 |
|
| 78 |
for n in range(1):# trange(self.opt.n_iter, desc="Sampling"):
|
| 79 |
for k,v in prompt.items():
|
| 80 |
+
prompt[k] = self.num_samples * [v]
|
| 81 |
c = self.model.get_learned_conditioning(prompt)# shape:[1,77,1280],即还没有变成句子embedding,仍是每个单词的embedding
|
| 82 |
if self.channel_dim>0:
|
| 83 |
shape = [self.channel_dim, 20, 312] # (z_dim, 80//2^x, 848//2^x)
|
| 84 |
else:
|
| 85 |
shape = [20, 312]
|
| 86 |
+
samples_ddim, _ = self.sampler.sample(S=self.ddim_steps,
|
| 87 |
conditioning=c,
|
| 88 |
+
batch_size=self.num_samples,
|
| 89 |
shape=shape,
|
| 90 |
verbose=False,
|
| 91 |
+
guidance_scale=self.scale,
|
| 92 |
original_inference_steps=self.original_inference_steps
|
| 93 |
)
|
| 94 |
x_samples_ddim = self.model.decode_first_stage(samples_ddim)
|
|
|
|
| 108 |
return record_dicts
|
| 109 |
|
| 110 |
@spaces.GPU(enable_queue=True)
|
| 111 |
+
def infer(ori_prompt, ddim_steps, num_samples, scale, seed):
|
| 112 |
+
np.random.seed(seed)
|
| 113 |
+
torch.manual_seed(seed)
|
| 114 |
|
| 115 |
prompt = dict(ori_caption=ori_prompt,struct_caption=f'<{ori_prompt}& all>')
|
| 116 |
|
|
|
|
| 131 |
vocoder = VocoderBigVGAN("./model/vocoder",device)
|
| 132 |
|
| 133 |
|
| 134 |
+
generator = GenSamples(sampler,model,"results/test",vocoder,save_mel = False,save_wav = True, original_inference_steps=config.model.params.num_ddim_timesteps, ddim_steps=ddim_steps, scale=scale, num_samples=num_samples)
|
| 135 |
csv_dicts = []
|
| 136 |
|
| 137 |
with torch.no_grad():
|
|
|
|
| 142 |
print(f"Your samples are ready and waiting four you here: \nresults/test \nEnjoy.")
|
| 143 |
return "results/test/"+wav_name+"_0.wav"
|
| 144 |
|
| 145 |
+
def my_inference_function(text_prompt, ddim_steps, num_samples, scale, seed):
|
| 146 |
+
file_path = infer(text_prompt, ddim_steps, num_samples, scale, seed)
|
| 147 |
return file_path
|
| 148 |
|
| 149 |
|
| 150 |
+
with gr.Blocks() as demo:
|
| 151 |
+
with gr.Row():
|
| 152 |
+
tgr.Markdown("## AudioLCM:Text-to-Audio Generation with Latent Consistency Models")
|
| 153 |
+
|
| 154 |
+
with gr.Row():
|
| 155 |
+
with gr.Column():
|
| 156 |
+
prompt = gr.Textbox(label="Prompt: Input your text here. ")
|
| 157 |
+
run_button = gr.Button(label="Run")
|
| 158 |
+
|
| 159 |
+
with gr.Accordion("Advanced options", open=False):
|
| 160 |
+
num_samples = gr.Slider(
|
| 161 |
+
label="Select from audios num.This number control the number of candidates \
|
| 162 |
+
(e.g., generate three audios and choose the best to show you). A Larger value usually lead to \
|
| 163 |
+
better quality with heavier computation", minimum=1, maximum=10, value=1, step=1)
|
| 164 |
+
# num_samples = 1
|
| 165 |
+
ddim_steps = gr.Slider(label="Steps", minimum=1,
|
| 166 |
+
maximum=150, value=2, step=1)
|
| 167 |
+
scale = gr.Slider(
|
| 168 |
+
label="Guidance Scale:(Large => more relevant to text but the quality may drop)", minimum=0.1, maximum=8.0, value=5.0, step=0.1
|
| 169 |
+
)
|
| 170 |
+
seed = gr.Slider(
|
| 171 |
+
label="Seed:Change this value (any integer number) will lead to a different generation result.",
|
| 172 |
+
minimum=0,
|
| 173 |
+
maximum=2147483647,
|
| 174 |
+
step=1,
|
| 175 |
+
value=44,
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
with gr.Column():
|
| 179 |
+
outaudio = gr.Audio()
|
| 180 |
+
|
| 181 |
+
run_button.click(fn=my_inference_function, inputs=[
|
| 182 |
+
prompt,ddim_steps, num_samples, scale, seed], outputs=[outaudio])
|
| 183 |
+
with gr.Row():
|
| 184 |
+
with gr.Column():
|
| 185 |
+
gr.Examples(
|
| 186 |
+
examples = [['a dog barking and a bird chirping',100,3,3,55],['Pigeons peck, coo, and flap their wings before a man speaks',100,3,3,55],
|
| 187 |
+
['music of violin and piano',100,3,2,88],['wind thunder and rain falling',100,3,3,55],['music made by drum kit',100,3,3,55]],
|
| 188 |
+
inputs = [prompt,ddim_steps, num_samples, scale, seed],
|
| 189 |
+
outputs = [outaudio]
|
| 190 |
+
)
|
| 191 |
+
with gr.Column():
|
| 192 |
+
pass
|
| 193 |
+
|
| 194 |
+
demo.launch()
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
# gradio_interface = gradio.Interface(
|
| 198 |
+
# fn = my_inference_function,
|
| 199 |
+
# inputs = "text",
|
| 200 |
+
# outputs = "audio"
|
| 201 |
+
# )
|
| 202 |
+
# gradio_interface.launch()
|