import os import gradio as gr import requests import pandas as pd from transformers import pipeline from duckduckgo_search import ddg # --- Constants --- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" # --- Tool Definitions --- class WebSearchTool: """A simple open-source web search tool using DuckDuckGo.""" def search(self, query: str) -> list[str]: # Perform a DuckDuckGo search and return top 3 titles try: results = ddg(query, max_results=3) if not results: return [] return [item.get("title", "").strip() for item in results] except Exception as e: print(f"DuckDuckGo search error: {e}") return [] class CalculatorTool: """Evaluates simple arithmetic expressions.""" def calculate(self, expression: str) -> float: # WARNING: using eval; in production, use a safe parser return eval(expression, {}, {}) # --- Agent Definition --- class ToolsAgent: def __init__(self): print("ToolsAgent initialized.") # Initialize LLM for general reasoning self.llm = pipeline( "text-generation", model="gpt2", tokenizer="gpt2", return_full_text=False ) # Initialize tools self.tools = { "search": WebSearchTool(), "calc": CalculatorTool(), } def __call__(self, question: str) -> str: print(f"Agent received question: {question}") q_lower = question.lower().strip() # 1) If calculation question if any(op in q_lower for op in ["+", "-", "*", "/"]): try: result = self.tools["calc"].calculate(q_lower) return str(result) except Exception as e: print(f"Calc error: {e}") # 2) If search instruction if q_lower.startswith("search") or "find" in q_lower: try: titles = self.tools["search"].search(question) # Return only the first word of the top title return titles[0].split()[0] if titles else "" except Exception as e: print(f"Search error: {e}") # 3) Fallback to LLM try: out = self.llm(question, max_length=50, num_return_sequences=1)[0]["generated_text"].strip() # Return only the first token (single word/number) return out.split()[0] except Exception as e: print(f"LLM error: {e}") return "" # --- Evaluation and Submission Logic --- def run_and_submit_all(profile: gr.OAuthProfile | None): space_id = os.getenv("SPACE_ID") if not profile: return "Please Login to Hugging Face with the button.", None username = profile.username.strip() questions_url = f"{DEFAULT_API_URL}/questions" submit_url = f"{DEFAULT_API_URL}/submit" try: agent = ToolsAgent() except Exception as e: return f"Error initializing agent: {e}", None try: resp = requests.get(questions_url, timeout=15) resp.raise_for_status() qs = resp.json() except Exception as e: return f"Error fetching questions: {e}", None answers, log = [], [] for item in qs: tid = item.get("task_id") q = item.get("question") if not tid or q is None: continue ans = agent(q) answers.append({"task_id": tid, "submitted_answer": ans}) log.append({"Task ID": tid, "Question": q, "Submitted Answer": ans}) if not answers: return "No answers generated.", pd.DataFrame(log) payload = { "username": username, "agent_code": f"https://huggingface.co/spaces/{space_id}/tree/main", "answers": answers } try: res = requests.post(submit_url, json=payload, timeout=60) res.raise_for_status() data = res.json() status = ( f"Submission Successful! User: {data.get('username')} " f"Score: {data.get('score', 'N/A')}%" ) except Exception as e: status = f"Submission Failed: {e}" return status, pd.DataFrame(log) # --- Gradio Interface --- with gr.Blocks() as demo: gr.Markdown("## Agents Course: DuckDuckGo Search + Calculator Agent") gr.LoginButton() run_btn = gr.Button("Run Evaluation & Submit All Answers") out_txt = gr.Textbox(label="Result", lines=3) out_df = gr.DataFrame(label="Log", wrap=True) run_btn.click(fn=run_and_submit_all, outputs=[out_txt, out_df]) if __name__ == "__main__": demo.launch(debug=True)