Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2024 and The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ Parler-TTS model configuration""" | |
| from transformers import AutoConfig, logging | |
| from transformers.configuration_utils import PretrainedConfig | |
| from importlib.metadata import version | |
| from packaging.version import Version | |
| use_dac_on_the_hub = Version(version("transformers")) > Version("4.44.2dev") | |
| logger = logging.get_logger(__name__) | |
| PARLER_TTS_PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
| "parler-tts/parler-tts-mini-v1": "https://huggingface.co/parler-tts/parler-tts-mini-v1/resolve/main/config.json", | |
| # See all ParlerTTS models at https://huggingface.co/models?filter=parler_tts | |
| } | |
| class ParlerTTSDecoderConfig(PretrainedConfig): | |
| r""" | |
| This is the configuration class to store the configuration of an [`ParlerTTSDecoder`]. It is used to instantiate a | |
| Parler-TTS decoder according to the specified arguments, defining the model architecture. Instantiating a | |
| configuration with the defaults will yield a similar configuration to that of the Parler-TTS | |
| [parler-tts/parler-tts-mini-v1](https://huggingface.co/parler-tts/parler-tts-mini-v1) architecture. | |
| Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
| documentation from [`PretrainedConfig`] for more information. | |
| Args: | |
| vocab_size (`int`, *optional*, defaults to 2049): | |
| Vocabulary size of the ParlerTTSDecoder model. Defines the number of different tokens that can be | |
| represented by the `inputs_ids` passed when calling [`ParlerTTSDecoder`]. | |
| hidden_size (`int`, *optional*, defaults to 1024): | |
| Dimensionality of the layers and the pooler layer. | |
| num_hidden_layers (`int`, *optional*, defaults to 24): | |
| Number of decoder layers. | |
| num_attention_heads (`int`, *optional*, defaults to 16): | |
| Number of attention heads for each attention layer in the Transformer block. | |
| num_key_value_heads (`int`, *optional*): | |
| This is the number of key_value heads that should be used to implement Grouped Query Attention. If | |
| `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if | |
| `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When | |
| converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed | |
| by meanpooling all the original heads within that group. For more details checkout [this | |
| paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to | |
| `num_attention_heads`. | |
| num_cross_attention_key_value_heads (`int`, *optional*): | |
| This is the number of key_value heads that should be used to implement Grouped Query Attention in the cross-attention layers. | |
| If it is not specified, will default to `num_key_value_heads`. | |
| ffn_dim (`int`, *optional*, defaults to 4096): | |
| Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer block. | |
| activation_function (`str` or `function`, *optional*, defaults to `"gelu"`): | |
| The non-linear activation function (function or string) in the decoder and pooler. If string, `"gelu"`, | |
| `"relu"`, `"silu"` and `"gelu_new"` are supported. | |
| dropout (`float`, *optional*, defaults to 0.1): | |
| The dropout probability for all fully connected layers in the embeddings, text_encoder, and pooler. | |
| attention_dropout (`float`, *optional*, defaults to 0.0): | |
| The dropout ratio for the attention probabilities. | |
| activation_dropout (`float`, *optional*, defaults to 0.0): | |
| The dropout ratio for activations inside the fully connected layer. | |
| max_position_embeddings (`int`, *optional*, defaults to 2048): | |
| The maximum sequence length that this model might ever be used with. Typically, set this to something large | |
| just in case (e.g., 512 or 1024 or 2048). | |
| initializer_factor (`float`, *optional*, defaults to 0.02): | |
| The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
| layerdrop (`float`, *optional*, defaults to 0.0): | |
| The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) | |
| for more details. | |
| scale_embedding (`bool`, *optional*, defaults to `False`): | |
| Scale embeddings by diving by sqrt(hidden_size). | |
| use_cache (`bool`, *optional*, defaults to `True`): | |
| Whether the model should return the last key/values attentions (not used by all models) | |
| num_codebooks (`int`, *optional*, defaults to 4): | |
| The number of parallel codebooks forwarded to the model. | |
| tie_word_embeddings(`bool`, *optional*, defaults to `False`): | |
| Whether input and output word embeddings should be tied. | |
| rope_embeddings (`bool`, *optional*, defaults to `False`): | |
| Whether to use ROPE or absolute positional embeddings. | |
| rope_theta (`float`, *optional*, defaults to 100000.0): | |
| The base period of the RoPE embeddings. | |
| cross_attention_implementation_strategy (`str`, *optional*): | |
| If not specified, the cross-attention implementation will be the same as `_attn_implementation`. If `always_eager`, it will always be the eager implementation. If `always_sdpa`, it will always be the sdpa implementation. | |
| use_fused_lm_heads(`bool`, *optional*, defaults to `False`): | |
| Whether to fuse audio LM heads instead of applying them sequentially. | |
| codebook_weights(`List[int]`, *optional*): | |
| Weights applied to each codebook when computing the loss. | |
| """ | |
| model_type = "parler_tts_decoder" | |
| keys_to_ignore_at_inference = ["past_key_values"] | |
| def __init__( | |
| self, | |
| vocab_size=2049, # vocab size = 2048 (encodec vocab size) + 1 (eos) | |
| max_position_embeddings=2048, | |
| num_hidden_layers=24, | |
| ffn_dim=4096, | |
| num_attention_heads=16, | |
| num_key_value_heads=None, | |
| num_cross_attention_key_value_heads=None, | |
| layerdrop=0.0, | |
| use_cache=True, | |
| activation_function="gelu", | |
| hidden_size=1024, | |
| dropout=0.1, | |
| attention_dropout=0.0, | |
| activation_dropout=0.0, | |
| initializer_factor=0.02, | |
| scale_embedding=False, | |
| num_codebooks=4, | |
| pad_token_id=2048, | |
| bos_token_id=2049, | |
| eos_token_id=2048, | |
| tie_word_embeddings=False, | |
| rope_embeddings=False, | |
| rope_theta=10_000.0, | |
| cross_attention_implementation_strategy=None, | |
| use_fused_lm_heads=False, | |
| codebook_weights=None, | |
| **kwargs, | |
| ): | |
| self.vocab_size = vocab_size | |
| self.max_position_embeddings = max_position_embeddings | |
| self.hidden_size = hidden_size | |
| self.ffn_dim = ffn_dim | |
| self.num_hidden_layers = num_hidden_layers | |
| self.num_attention_heads = num_attention_heads | |
| if num_key_value_heads is None: | |
| num_key_value_heads = num_attention_heads | |
| self.num_key_value_heads = num_key_value_heads | |
| if num_cross_attention_key_value_heads is None: | |
| num_cross_attention_key_value_heads = num_key_value_heads | |
| self.num_cross_attention_key_value_heads = num_cross_attention_key_value_heads | |
| self.dropout = dropout | |
| self.attention_dropout = attention_dropout | |
| self.activation_dropout = activation_dropout | |
| self.activation_function = activation_function | |
| self.initializer_factor = initializer_factor | |
| self.layerdrop = layerdrop | |
| self.use_cache = use_cache | |
| self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True | |
| self.num_codebooks = num_codebooks | |
| self.rope_embeddings = rope_embeddings | |
| self.rope_theta = rope_theta | |
| self.cross_attention_implementation_strategy = cross_attention_implementation_strategy | |
| self.use_fused_lm_heads = use_fused_lm_heads | |
| self.codebook_weights = codebook_weights | |
| if codebook_weights is not None and len(codebook_weights) != num_codebooks: | |
| raise ValueError(f"`codebook_weights` has length {len(codebook_weights)} when it should be of length {num_codebooks}.") | |
| super().__init__( | |
| pad_token_id=pad_token_id, | |
| bos_token_id=bos_token_id, | |
| eos_token_id=eos_token_id, | |
| tie_word_embeddings=tie_word_embeddings, | |
| **kwargs, | |
| ) | |
| class ParlerTTSConfig(PretrainedConfig): | |
| r""" | |
| This is the configuration class to store the configuration of a [`ParlerTTSModel`]. It is used to instantiate a | |
| Parler-TTS model according to the specified arguments, defining the text encoder, audio encoder and Parler-TTS decoder | |
| configs. | |
| Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
| documentation from [`PretrainedConfig`] for more information. | |
| Args: | |
| vocab_size (`int`, *optional*, defaults to 1024): | |
| Vocabulary size of the prompt token ids. Defines the number of different tokens that can be | |
| represented by the `prompt_inputs_ids`. | |
| prompt_cross_attention (`bool`, *optional*, defaults to `False`): | |
| Whether to use cross-attention conditioning for the prompt (as well as the description). | |
| kwargs (*optional*): | |
| Dictionary of keyword arguments. Notably: | |
| - **text_encoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that | |
| defines the text encoder config. | |
| - **audio_encoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that | |
| defines the audio encoder config. | |
| - **decoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines | |
| the decoder config. | |
| Example: | |
| ```python | |
| >>> from transformers import ( | |
| ... ParlerTTSConfig, | |
| ... ParlerTTSDecoderConfig, | |
| ... T5Config, | |
| ... EncodecConfig, | |
| ... ParlerTTSForConditionalGeneration, | |
| ... ) | |
| >>> # Initializing text encoder, audio encoder, and decoder model configurations | |
| >>> text_encoder_config = T5Config() | |
| >>> audio_encoder_config = EncodecConfig() | |
| >>> decoder_config = ParlerTTSDecoderConfig() | |
| >>> configuration = ParlerTTSConfig.from_sub_models_config( | |
| ... text_encoder_config, audio_encoder_config, decoder_config | |
| ... ) | |
| >>> # Initializing a ParlerTTSForConditionalGeneration (with random weights) from the parler-tts/parler-tts-mini-v1 style configuration | |
| >>> model = ParlerTTSForConditionalGeneration(configuration) | |
| >>> # Accessing the model configuration | |
| >>> configuration = model.config | |
| >>> config_text_encoder = model.config.text_encoder | |
| >>> config_audio_encoder = model.config.audio_encoder | |
| >>> config_decoder = model.config.decoder | |
| >>> # Saving the model, including its configuration | |
| >>> model.save_pretrained("parler_tts-model") | |
| >>> # loading model and config from pretrained folder | |
| >>> parler_tts_config = ParlerTTSConfig.from_pretrained("parler_tts-model") | |
| >>> model = ParlerTTSForConditionalGeneration.from_pretrained("parler_tts-model", config=parler_tts_config) | |
| ```""" | |
| model_type = "parler_tts" | |
| is_composition = True | |
| def __init__(self, vocab_size=1024, prompt_cross_attention=False, **kwargs): | |
| super().__init__(**kwargs) | |
| if "text_encoder" not in kwargs or "audio_encoder" not in kwargs or "decoder" not in kwargs: | |
| raise ValueError("Config has to be initialized with text_encoder, audio_encoder and decoder config") | |
| text_encoder_config = kwargs.pop("text_encoder") | |
| text_encoder_model_type = text_encoder_config.pop("model_type") | |
| audio_encoder_config = kwargs.pop("audio_encoder") | |
| audio_encoder_model_type = audio_encoder_config.pop("model_type") | |
| model_version = kwargs.get("transformers_version", None) | |
| if model_version is not None and Version(model_version) <= Version("4.44.2dev") and use_dac_on_the_hub and audio_encoder_model_type=="dac": | |
| # here we have to manually change model type if DAC based on transformers version | |
| audio_encoder_model_type = "dac_on_the_hub" | |
| decoder_config = kwargs.pop("decoder") | |
| self.vocab_size = vocab_size | |
| self.prompt_cross_attention = prompt_cross_attention | |
| self.text_encoder = AutoConfig.for_model(text_encoder_model_type, **text_encoder_config) | |
| self.audio_encoder = AutoConfig.for_model(audio_encoder_model_type, **audio_encoder_config) | |
| self.decoder = ParlerTTSDecoderConfig(**decoder_config) | |
| self.is_encoder_decoder = True | |
| def from_sub_models_config( | |
| cls, | |
| text_encoder_config: PretrainedConfig, | |
| audio_encoder_config: PretrainedConfig, | |
| decoder_config: ParlerTTSDecoderConfig, | |
| **kwargs, | |
| ): | |
| r""" | |
| Instantiate a [`ParlerTTSConfig`] (or a derived class) from text encoder, audio encoder and decoder | |
| configurations. | |
| Returns: | |
| [`ParlerTTSConfig`]: An instance of a configuration object | |
| """ | |
| return cls( | |
| text_encoder=text_encoder_config.to_dict(), | |
| audio_encoder=audio_encoder_config.to_dict(), | |
| decoder=decoder_config.to_dict(), | |
| **kwargs, | |
| ) | |
| # This is a property because you might want to change the codec model on the fly | |
| def sampling_rate(self): | |
| return self.audio_encoder.sampling_rate |