File size: 4,493 Bytes
b448efc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3efd956
b448efc
 
 
a80816e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import torch
from PIL import Image
from RealESRGAN import RealESRGAN
import gradio as gr
import numpy as np
import tempfile
import time
import zipfile
import os

# Set the device to CUDA if available, otherwise CPU
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

def load_model(scale):
    model = RealESRGAN(device, scale=scale)
    weights_path = f'weights/RealESRGAN_x{scale}.pth'
    try:
        model.load_weights(weights_path, download=True)
        print(f"Weights for scale {scale} loaded successfully.")
    except Exception as e:
        print(f"Error loading weights for scale {scale}: {e}")
        model.load_weights(weights_path, download=False)
    return model

# Load models for different scales
model2 = load_model(2)
model4 = load_model(4)
model8 = load_model(8)

def enhance_image(image, scale):
    try:
        print(f"Enhancing image with scale {scale}...")
        start_time = time.time()
        image_np = np.array(image.convert('RGB'))
        print(f"Image converted to numpy array: shape {image_np.shape}, dtype {image_np.dtype}")
        
        if scale == '2x':
            result = model2.predict(image_np)
        elif scale == '4x':
            result = model4.predict(image_np)
        else:
            result = model8.predict(image_np)
            
        enhanced_image = Image.fromarray(np.uint8(result))
        print(f"Image enhanced in {time.time() - start_time:.2f} seconds")
        return enhanced_image
    except Exception as e:
        print(f"Error enhancing image: {e}")
        return image

def muda_dpi(input_image, dpi):
    dpi_tuple = (dpi, dpi)
    image = Image.fromarray(input_image.astype('uint8'), 'RGB')
    temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.jpg')
    image.save(temp_file, format='JPEG', dpi=dpi_tuple)
    temp_file.close()
    return Image.open(temp_file.name)

def resize_image(input_image, width, height):
    image = Image.fromarray(input_image.astype('uint8'), 'RGB')
    resized_image = image.resize((width, height))
    temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.jpg')
    resized_image.save(temp_file, format='JPEG')
    temp_file.close()
    return Image.open(temp_file.name)

def process_images(image_files, enhance, scale, adjust_dpi, dpi, resize, width, height):
    processed_images = []
    temp_dir = tempfile.mkdtemp()
    
    for image_file in image_files:
        input_image = np.array(Image.open(image_file).convert('RGB'))
        original_image = Image.fromarray(input_image.astype('uint8'), 'RGB')
        
        if enhance:
            original_image = enhance_image(original_image, scale)
        
        if adjust_dpi:
            original_image = muda_dpi(np.array(original_image), dpi)
            
        if resize:
            original_image = resize_image(np.array(original_image), width, height)
        
        # Save each image as JPEG, preserving the original filename
        file_name = os.path.basename(image_file.name)
        output_path = os.path.join(temp_dir, file_name)
        original_image.save(output_path, format='JPEG')
        processed_images.append(output_path)
    
    # Create a ZIP file with all processed images
    zip_path = os.path.join(temp_dir, 'processed_images.zip')
    with zipfile.ZipFile(zip_path, 'w') as zipf:
        for file_path in processed_images:
            zipf.write(file_path, os.path.basename(file_path))
    
    # Load images for display in the gallery
    display_images = [Image.open(img_path) for img_path in processed_images]
    
    return display_images, zip_path

iface = gr.Interface(
    fn=process_images,
    inputs=[
        gr.Files(label="Upload Image Files"),  # Use gr.Files for multiple file uploads
        gr.Checkbox(label="Enhance Images (ESRGAN)"),
        gr.Radio(['2x', '4x', '8x'], type="value", value='2x', label='Resolution model'),
        gr.Checkbox(label="Adjust DPI"),
        gr.Number(label="DPI", value=300),
        gr.Checkbox(label="Resize"),
        gr.Number(label="Width", value=512),
        gr.Number(label="Height", value=512)
    ],
    outputs=[
        gr.Gallery(label="Final Images"),  # Display the processed images
        gr.File(label="Download Final Images (ZIP)")  # Provide a ZIP file for download
    ],
    title="bulk image upscaler",
    description="Upload multiple images (.jpg, .png), enhance using AI, adjust DPI, resize, and download the final results as a ZIP file."
)

iface.launch(debug=True)