File size: 9,057 Bytes
f682c89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import json
import os
import sqlite3
from datetime import datetime
from pathlib import Path

from huggingface_hub import CommitScheduler

try:  # absolute imports when installed
    from trackio.context_vars import current_scheduler
    from trackio.dummy_commit_scheduler import DummyCommitScheduler
    from trackio.utils import TRACKIO_DIR
except Exception:  # relative imports for local execution on Spaces
    from context_vars import current_scheduler
    from dummy_commit_scheduler import DummyCommitScheduler
    from utils import TRACKIO_DIR


class SQLiteStorage:
    @staticmethod
    def _get_connection(db_path: Path) -> sqlite3.Connection:
        conn = sqlite3.connect(str(db_path))
        conn.row_factory = sqlite3.Row
        return conn

    @staticmethod
    def get_project_db_path(project: str) -> Path:
        """Get the database path for a specific project."""
        safe_project_name = "".join(
            c for c in project if c.isalnum() or c in ("-", "_")
        ).rstrip()
        if not safe_project_name:
            safe_project_name = "default"
        return TRACKIO_DIR / f"{safe_project_name}.db"

    @staticmethod
    def init_db(project: str) -> Path:
        """
        Initialize the SQLite database with required tables.
        Returns the database path.
        """
        db_path = SQLiteStorage.get_project_db_path(project)
        db_path.parent.mkdir(parents=True, exist_ok=True)
        with SQLiteStorage.get_scheduler().lock:
            with sqlite3.connect(db_path) as conn:
                cursor = conn.cursor()
                cursor.execute("""
                    CREATE TABLE IF NOT EXISTS metrics (
                        id INTEGER PRIMARY KEY AUTOINCREMENT,
                        timestamp TEXT NOT NULL,
                        run_name TEXT NOT NULL,
                        step INTEGER NOT NULL,
                        metrics TEXT NOT NULL
                    )
                """)
                cursor.execute(
                    """
                    CREATE INDEX IF NOT EXISTS idx_metrics_run_step
                    ON metrics(run_name, step)
                    """
                )
                conn.commit()
        return db_path

    @staticmethod
    def get_scheduler():
        """
        Get the scheduler for the database based on the environment variables.
        This applies to both local and Spaces.
        """
        if current_scheduler.get() is not None:
            return current_scheduler.get()
        hf_token = os.environ.get("HF_TOKEN")
        dataset_id = os.environ.get("TRACKIO_DATASET_ID")
        if dataset_id is None:
            scheduler = DummyCommitScheduler()
        else:
            scheduler = CommitScheduler(
                repo_id=dataset_id,
                repo_type="dataset",
                folder_path=TRACKIO_DIR,
                private=True,
                squash_history=True,
                token=hf_token,
            )
        current_scheduler.set(scheduler)
        return scheduler

    @staticmethod
    def log(project: str, run: str, metrics: dict):
        """
        Safely log metrics to the database. Before logging, this method will ensure the database exists
        and is set up with the correct tables. It also uses the scheduler to lock the database so
        that there is no race condition when logging / syncing to the Hugging Face Dataset.
        """
        db_path = SQLiteStorage.init_db(project)

        with SQLiteStorage.get_scheduler().lock:
            with SQLiteStorage._get_connection(db_path) as conn:
                cursor = conn.cursor()

                cursor.execute(
                    """
                    SELECT MAX(step) 
                    FROM metrics 
                    WHERE run_name = ?
                    """,
                    (run,),
                )
                last_step = cursor.fetchone()[0]
                current_step = 0 if last_step is None else last_step + 1

                current_timestamp = datetime.now().isoformat()

                cursor.execute(
                    """
                    INSERT INTO metrics
                    (timestamp, run_name, step, metrics)
                    VALUES (?, ?, ?, ?)
                    """,
                    (
                        current_timestamp,
                        run,
                        current_step,
                        json.dumps(metrics),
                    ),
                )
                conn.commit()

    @staticmethod
    def bulk_log(
        project: str,
        run: str,
        metrics_list: list[dict],
        steps: list[int] | None = None,
        timestamps: list[str] | None = None,
    ):
        """Bulk log metrics to the database with specified steps and timestamps."""
        if not metrics_list:
            return

        if steps is None:
            steps = list(range(len(metrics_list)))

        if timestamps is None:
            timestamps = [datetime.now().isoformat()] * len(metrics_list)

        if len(metrics_list) != len(steps) or len(metrics_list) != len(timestamps):
            raise ValueError(
                "metrics_list, steps, and timestamps must have the same length"
            )

        db_path = SQLiteStorage.init_db(project)
        with SQLiteStorage.get_scheduler().lock:
            with SQLiteStorage._get_connection(db_path) as conn:
                cursor = conn.cursor()

                data = []
                for i, metrics in enumerate(metrics_list):
                    data.append(
                        (
                            timestamps[i],
                            run,
                            steps[i],
                            json.dumps(metrics),
                        )
                    )

                cursor.executemany(
                    """
                    INSERT INTO metrics
                    (timestamp, run_name, step, metrics)
                    VALUES (?, ?, ?, ?)
                    """,
                    data,
                )
                conn.commit()

    @staticmethod
    def get_metrics(project: str, run: str) -> list[dict]:
        """Retrieve metrics for a specific run. The metrics also include the step count (int) and the timestamp (datetime object)."""
        db_path = SQLiteStorage.get_project_db_path(project)
        if not db_path.exists():
            return []

        with SQLiteStorage._get_connection(db_path) as conn:
            cursor = conn.cursor()
            cursor.execute(
                """
                SELECT timestamp, step, metrics
                FROM metrics
                WHERE run_name = ?
                ORDER BY timestamp
                """,
                (run,),
            )

            rows = cursor.fetchall()
            results = []
            for row in rows:
                metrics = json.loads(row["metrics"])
                metrics["timestamp"] = row["timestamp"]
                metrics["step"] = row["step"]
                results.append(metrics)

            return results

    @staticmethod
    def get_projects() -> list[str]:
        """
        Get list of all projects by scanning the database files in the trackio directory.
        """
        projects: set[str] = set()
        if not TRACKIO_DIR.exists():
            return []

        for db_file in TRACKIO_DIR.glob("*.db"):
            project_name = db_file.stem
            projects.add(project_name)
        return sorted(projects)

    @staticmethod
    def get_runs(project: str) -> list[str]:
        """Get list of all runs for a project."""
        db_path = SQLiteStorage.get_project_db_path(project)
        if not db_path.exists():
            return []

        with SQLiteStorage._get_connection(db_path) as conn:
            cursor = conn.cursor()
            cursor.execute(
                "SELECT DISTINCT run_name FROM metrics",
            )
            return [row[0] for row in cursor.fetchall()]

    @staticmethod
    def get_max_steps_for_runs(project: str, runs: list[str]) -> dict[str, int]:
        """Efficiently get the maximum step for multiple runs in a single query."""
        db_path = SQLiteStorage.get_project_db_path(project)
        if not db_path.exists():
            return {run: 0 for run in runs}

        with SQLiteStorage._get_connection(db_path) as conn:
            cursor = conn.cursor()
            placeholders = ",".join("?" * len(runs))
            cursor.execute(
                f"""
                SELECT run_name, MAX(step) as max_step
                FROM metrics
                WHERE run_name IN ({placeholders})
                GROUP BY run_name
                """,
                runs,
            )

            results = {run: 0 for run in runs}  # Default to 0 for runs with no data
            for row in cursor.fetchall():
                results[row["run_name"]] = row["max_step"]

            return results

    def finish(self):
        """Cleanup when run is finished."""
        pass