abidlabs's picture
abidlabs HF Staff
Upload folder using huggingface_hub
e92d0c7 verified
import os
import shutil
import uuid
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Literal
import numpy as np
from PIL import Image as PILImage
try: # absolute imports when installed
from trackio.file_storage import FileStorage
from trackio.utils import MEDIA_DIR
from trackio.video_writer import write_video
except ImportError: # relative imports for local execution on Spaces
from file_storage import FileStorage
from utils import MEDIA_DIR
from video_writer import write_video
class TrackioMedia(ABC):
"""
Abstract base class for Trackio media objects
Provides shared functionality for file handling and serialization.
"""
TYPE: str
def __init_subclass__(cls, **kwargs):
"""Ensure subclasses define the TYPE attribute."""
super().__init_subclass__(**kwargs)
if not hasattr(cls, "TYPE") or cls.TYPE is None:
raise TypeError(f"Class {cls.__name__} must define TYPE attribute")
def __init__(self, value, caption: str | None = None):
self.caption = caption
self._value = value
self._file_path: Path | None = None
# Validate file existence for string/Path inputs
if isinstance(self._value, str | Path):
if not os.path.isfile(self._value):
raise ValueError(f"File not found: {self._value}")
def _file_extension(self) -> str:
if self._file_path:
return self._file_path.suffix[1:].lower()
if isinstance(self._value, str | Path):
path = Path(self._value)
return path.suffix[1:].lower()
if hasattr(self, "_format") and self._format:
return self._format
return "unknown"
def _get_relative_file_path(self) -> Path | None:
return self._file_path
def _get_absolute_file_path(self) -> Path | None:
if self._file_path:
return MEDIA_DIR / self._file_path
return None
def _save(self, project: str, run: str, step: int = 0):
if self._file_path:
return
media_dir = FileStorage.init_project_media_path(project, run, step)
filename = f"{uuid.uuid4()}.{self._file_extension()}"
file_path = media_dir / filename
# Delegate to subclass-specific save logic
self._save_media(file_path)
self._file_path = file_path.relative_to(MEDIA_DIR)
@abstractmethod
def _save_media(self, file_path: Path):
"""
Performs the actual media saving logic.
"""
pass
def _to_dict(self) -> dict:
if not self._file_path:
raise ValueError("Media must be saved to file before serialization")
return {
"_type": self.TYPE,
"file_path": str(self._get_relative_file_path()),
"caption": self.caption,
}
TrackioImageSourceType = str | Path | np.ndarray | PILImage.Image
class TrackioImage(TrackioMedia):
"""
Initializes an Image object.
Example:
```python
import trackio
import numpy as np
from PIL import Image
# Create an image from numpy array
image_data = np.random.randint(0, 255, (64, 64, 3), dtype=np.uint8)
image = trackio.Image(image_data, caption="Random image")
trackio.log({"my_image": image})
# Create an image from PIL Image
pil_image = Image.new('RGB', (100, 100), color='red')
image = trackio.Image(pil_image, caption="Red square")
trackio.log({"red_image": image})
# Create an image from file path
image = trackio.Image("path/to/image.jpg", caption="Photo from file")
trackio.log({"file_image": image})
```
Args:
value (`str`, `Path`, `numpy.ndarray`, or `PIL.Image`, *optional*, defaults to `None`):
A path to an image, a PIL Image, or a numpy array of shape (height, width, channels).
caption (`str`, *optional*, defaults to `None`):
A string caption for the image.
"""
TYPE = "trackio.image"
def __init__(self, value: TrackioImageSourceType, caption: str | None = None):
super().__init__(value, caption)
self._format: str | None = None
if (
isinstance(self._value, np.ndarray | PILImage.Image)
and self._format is None
):
self._format = "png"
def _as_pil(self) -> PILImage.Image | None:
try:
if isinstance(self._value, np.ndarray):
arr = np.asarray(self._value).astype("uint8")
return PILImage.fromarray(arr).convert("RGBA")
if isinstance(self._value, PILImage.Image):
return self._value.convert("RGBA")
except Exception as e:
raise ValueError(f"Failed to process image data: {self._value}") from e
return None
def _save_media(self, file_path: Path):
if pil := self._as_pil():
pil.save(file_path, format=self._format)
elif isinstance(self._value, str | Path):
if os.path.isfile(self._value):
shutil.copy(self._value, file_path)
else:
raise ValueError(f"File not found: {self._value}")
TrackioVideoSourceType = str | Path | np.ndarray
TrackioVideoFormatType = Literal["gif", "mp4", "webm"]
class TrackioVideo(TrackioMedia):
"""
Initializes a Video object.
Example:
```python
import trackio
import numpy as np
# Create a simple video from numpy array
frames = np.random.randint(0, 255, (10, 3, 64, 64), dtype=np.uint8)
video = trackio.Video(frames, caption="Random video", fps=30)
# Create a batch of videos
batch_frames = np.random.randint(0, 255, (3, 10, 3, 64, 64), dtype=np.uint8)
batch_video = trackio.Video(batch_frames, caption="Batch of videos", fps=15)
# Create video from file path
video = trackio.Video("path/to/video.mp4", caption="Video from file")
```
Args:
value (`str`, `Path`, or `numpy.ndarray`, *optional*, defaults to `None`):
A path to a video file, or a numpy array.
The array should be of type `np.uint8` with RGB values in the range `[0, 255]`.
It is expected to have shape of either (frames, channels, height, width) or (batch, frames, channels, height, width).
For the latter, the videos will be tiled into a grid.
caption (`str`, *optional*, defaults to `None`):
A string caption for the video.
fps (`int`, *optional*, defaults to `None`):
Frames per second for the video. Only used when value is an ndarray. Default is `24`.
format (`Literal["gif", "mp4", "webm"]`, *optional*, defaults to `None`):
Video format ("gif", "mp4", or "webm"). Only used when value is an ndarray. Default is "gif".
"""
TYPE = "trackio.video"
def __init__(
self,
value: TrackioVideoSourceType,
caption: str | None = None,
fps: int | None = None,
format: TrackioVideoFormatType | None = None,
):
super().__init__(value, caption)
if isinstance(value, np.ndarray):
if format is None:
format = "gif"
if fps is None:
fps = 24
self._fps = fps
self._format = format
@property
def _codec(self) -> str:
match self._format:
case "gif":
return "gif"
case "mp4":
return "h264"
case "webm":
return "vp9"
case _:
raise ValueError(f"Unsupported format: {self._format}")
def _save_media(self, file_path: Path):
if isinstance(self._value, np.ndarray):
video = TrackioVideo._process_ndarray(self._value)
write_video(file_path, video, fps=self._fps, codec=self._codec)
elif isinstance(self._value, str | Path):
if os.path.isfile(self._value):
shutil.copy(self._value, file_path)
else:
raise ValueError(f"File not found: {self._value}")
@staticmethod
def _process_ndarray(value: np.ndarray) -> np.ndarray:
# Verify value is either 4D (single video) or 5D array (batched videos).
# Expected format: (frames, channels, height, width) or (batch, frames, channels, height, width)
if value.ndim < 4:
raise ValueError(
"Video requires at least 4 dimensions (frames, channels, height, width)"
)
if value.ndim > 5:
raise ValueError(
"Videos can have at most 5 dimensions (batch, frames, channels, height, width)"
)
if value.ndim == 4:
# Reshape to 5D with single batch: (1, frames, channels, height, width)
value = value[np.newaxis, ...]
value = TrackioVideo._tile_batched_videos(value)
return value
@staticmethod
def _tile_batched_videos(video: np.ndarray) -> np.ndarray:
"""
Tiles a batch of videos into a grid of videos.
Input format: (batch, frames, channels, height, width) - original FCHW format
Output format: (frames, total_height, total_width, channels)
"""
batch_size, frames, channels, height, width = video.shape
next_pow2 = 1 << (batch_size - 1).bit_length()
if batch_size != next_pow2:
pad_len = next_pow2 - batch_size
pad_shape = (pad_len, frames, channels, height, width)
padding = np.zeros(pad_shape, dtype=video.dtype)
video = np.concatenate((video, padding), axis=0)
batch_size = next_pow2
n_rows = 1 << ((batch_size.bit_length() - 1) // 2)
n_cols = batch_size // n_rows
# Reshape to grid layout: (n_rows, n_cols, frames, channels, height, width)
video = video.reshape(n_rows, n_cols, frames, channels, height, width)
# Rearrange dimensions to (frames, total_height, total_width, channels)
video = video.transpose(2, 0, 4, 1, 5, 3)
video = video.reshape(frames, n_rows * height, n_cols * width, channels)
return video