Spaces:
Sleeping
Sleeping
Commit
·
5599f5a
1
Parent(s):
5ef548f
Install error fix attemp 12
Browse files
main.py
CHANGED
@@ -22,36 +22,93 @@ model_name = "microsoft/GUI-Actor-2B-Qwen2-VL"
|
|
22 |
model_loaded = False
|
23 |
|
24 |
async def load_model():
|
25 |
-
"""Load model with proper error handling"""
|
26 |
global model, processor, tokenizer, model_loaded
|
27 |
|
28 |
try:
|
29 |
logger.info("Starting model loading...")
|
30 |
|
31 |
-
#
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
|
|
|
|
|
|
|
|
42 |
tokenizer = processor.tokenizer
|
43 |
-
|
44 |
-
logger.info("Loading model...")
|
45 |
-
# Use specific Qwen2VL model class
|
46 |
-
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
47 |
-
model_name,
|
48 |
-
torch_dtype=torch.float32,
|
49 |
-
device_map=None, # CPU only
|
50 |
-
trust_remote_code=True,
|
51 |
-
low_cpu_mem_usage=True # For better memory management
|
52 |
-
).eval()
|
53 |
-
|
54 |
-
logger.info("Model loaded successfully!")
|
55 |
model_loaded = True
|
56 |
return True
|
57 |
|
@@ -111,7 +168,7 @@ def extract_coordinates(text):
|
|
111 |
|
112 |
def cpu_inference(conversation, model, tokenizer, processor):
|
113 |
"""
|
114 |
-
Inference function untuk CPU
|
115 |
"""
|
116 |
try:
|
117 |
# Apply chat template
|
@@ -124,23 +181,36 @@ def cpu_inference(conversation, model, tokenizer, processor):
|
|
124 |
# Get image from conversation
|
125 |
image = conversation[1]["content"][0]["image"]
|
126 |
|
127 |
-
# Process inputs
|
128 |
inputs = processor(
|
129 |
text=[text],
|
130 |
images=[image],
|
131 |
-
return_tensors="pt"
|
|
|
|
|
|
|
132 |
)
|
133 |
|
134 |
-
# Generate response
|
135 |
with torch.no_grad():
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
# Decode response
|
146 |
generated_ids = outputs[0][inputs["input_ids"].shape[1]:]
|
@@ -168,7 +238,8 @@ async def root():
|
|
168 |
return {
|
169 |
"message": "GUI-Actor API is running",
|
170 |
"status": "healthy",
|
171 |
-
"model_loaded": model_loaded
|
|
|
172 |
}
|
173 |
|
174 |
@app.post("/click/base64")
|
@@ -248,4 +319,18 @@ async def health_check():
|
|
248 |
"device": "cpu",
|
249 |
"torch_dtype": "float32",
|
250 |
"model_loaded": model_loaded
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
251 |
}
|
|
|
22 |
model_loaded = False
|
23 |
|
24 |
async def load_model():
|
25 |
+
"""Load model with proper error handling and fallback strategies"""
|
26 |
global model, processor, tokenizer, model_loaded
|
27 |
|
28 |
try:
|
29 |
logger.info("Starting model loading...")
|
30 |
|
31 |
+
# Try specific Qwen2VL classes first
|
32 |
+
try:
|
33 |
+
logger.info("Attempting to load with Qwen2VL specific classes...")
|
34 |
+
from transformers import Qwen2VLProcessor, Qwen2VLForConditionalGeneration
|
35 |
+
|
36 |
+
processor = Qwen2VLProcessor.from_pretrained(
|
37 |
+
model_name,
|
38 |
+
trust_remote_code=True
|
39 |
+
)
|
40 |
+
|
41 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
42 |
+
model_name,
|
43 |
+
torch_dtype=torch.float32,
|
44 |
+
device_map=None, # CPU only
|
45 |
+
trust_remote_code=True,
|
46 |
+
low_cpu_mem_usage=True
|
47 |
+
).eval()
|
48 |
+
|
49 |
+
logger.info("Successfully loaded with Qwen2VL specific classes")
|
50 |
+
|
51 |
+
except Exception as e1:
|
52 |
+
logger.warning(f"Failed with Qwen2VL classes: {e1}")
|
53 |
+
logger.info("Trying AutoProcessor and AutoModel fallback...")
|
54 |
+
|
55 |
+
try:
|
56 |
+
from transformers import AutoProcessor, AutoModel
|
57 |
+
|
58 |
+
processor = AutoProcessor.from_pretrained(
|
59 |
+
model_name,
|
60 |
+
trust_remote_code=True
|
61 |
+
)
|
62 |
+
|
63 |
+
model = AutoModel.from_pretrained(
|
64 |
+
model_name,
|
65 |
+
torch_dtype=torch.float32,
|
66 |
+
device_map=None,
|
67 |
+
trust_remote_code=True,
|
68 |
+
low_cpu_mem_usage=True
|
69 |
+
).eval()
|
70 |
+
|
71 |
+
logger.info("Successfully loaded with Auto classes")
|
72 |
+
|
73 |
+
except Exception as e2:
|
74 |
+
logger.warning(f"Failed with Auto classes: {e2}")
|
75 |
+
logger.info("Trying generic transformers approach...")
|
76 |
+
|
77 |
+
# Last fallback - try loading as generic model
|
78 |
+
from transformers import AutoConfig, AutoTokenizer
|
79 |
+
import transformers
|
80 |
+
|
81 |
+
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
|
82 |
+
logger.info(f"Model config type: {type(config)}")
|
83 |
+
|
84 |
+
# Try to find the right model class
|
85 |
+
if hasattr(transformers, 'Qwen2VLForConditionalGeneration'):
|
86 |
+
ModelClass = getattr(transformers, 'Qwen2VLForConditionalGeneration')
|
87 |
+
elif hasattr(transformers, 'AutoModelForVision2Seq'):
|
88 |
+
ModelClass = getattr(transformers, 'AutoModelForVision2Seq')
|
89 |
+
else:
|
90 |
+
raise Exception("No suitable model class found")
|
91 |
+
|
92 |
+
processor = AutoProcessor.from_pretrained(
|
93 |
+
model_name,
|
94 |
+
trust_remote_code=True
|
95 |
+
)
|
96 |
+
|
97 |
+
model = ModelClass.from_pretrained(
|
98 |
+
model_name,
|
99 |
+
config=config,
|
100 |
+
torch_dtype=torch.float32,
|
101 |
+
device_map=None,
|
102 |
+
trust_remote_code=True,
|
103 |
+
low_cpu_mem_usage=True
|
104 |
+
).eval()
|
105 |
|
106 |
+
# Verify processor and model are loaded
|
107 |
+
if processor is None or model is None:
|
108 |
+
raise Exception("Failed to load processor or model")
|
109 |
+
|
110 |
tokenizer = processor.tokenizer
|
111 |
+
logger.info("Model and processor loaded successfully!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
model_loaded = True
|
113 |
return True
|
114 |
|
|
|
168 |
|
169 |
def cpu_inference(conversation, model, tokenizer, processor):
|
170 |
"""
|
171 |
+
Inference function untuk CPU with better error handling
|
172 |
"""
|
173 |
try:
|
174 |
# Apply chat template
|
|
|
181 |
# Get image from conversation
|
182 |
image = conversation[1]["content"][0]["image"]
|
183 |
|
184 |
+
# Process inputs with proper padding
|
185 |
inputs = processor(
|
186 |
text=[text],
|
187 |
images=[image],
|
188 |
+
return_tensors="pt",
|
189 |
+
padding=True, # Enable padding
|
190 |
+
truncation=True, # Enable truncation for long texts
|
191 |
+
max_length=512 # Set reasonable max length
|
192 |
)
|
193 |
|
194 |
+
# Generate response with proper error handling
|
195 |
with torch.no_grad():
|
196 |
+
try:
|
197 |
+
outputs = model.generate(
|
198 |
+
**inputs,
|
199 |
+
max_new_tokens=256,
|
200 |
+
do_sample=True,
|
201 |
+
temperature=0.3,
|
202 |
+
top_p=0.8,
|
203 |
+
pad_token_id=tokenizer.eos_token_id if tokenizer.eos_token_id else tokenizer.pad_token_id
|
204 |
+
)
|
205 |
+
except Exception as e:
|
206 |
+
logger.error(f"Generation error: {e}")
|
207 |
+
# Try with simpler parameters
|
208 |
+
outputs = model.generate(
|
209 |
+
**inputs,
|
210 |
+
max_new_tokens=128,
|
211 |
+
do_sample=False,
|
212 |
+
pad_token_id=tokenizer.eos_token_id if tokenizer.eos_token_id else 0
|
213 |
+
)
|
214 |
|
215 |
# Decode response
|
216 |
generated_ids = outputs[0][inputs["input_ids"].shape[1]:]
|
|
|
238 |
return {
|
239 |
"message": "GUI-Actor API is running",
|
240 |
"status": "healthy",
|
241 |
+
"model_loaded": model_loaded,
|
242 |
+
"model_name": model_name
|
243 |
}
|
244 |
|
245 |
@app.post("/click/base64")
|
|
|
319 |
"device": "cpu",
|
320 |
"torch_dtype": "float32",
|
321 |
"model_loaded": model_loaded
|
322 |
+
}
|
323 |
+
|
324 |
+
@app.get("/debug")
|
325 |
+
async def debug_info():
|
326 |
+
"""Debug endpoint to check model loading status"""
|
327 |
+
import transformers
|
328 |
+
available_classes = [attr for attr in dir(transformers) if 'Qwen' in attr or 'VL' in attr]
|
329 |
+
|
330 |
+
return {
|
331 |
+
"model_loaded": model_loaded,
|
332 |
+
"processor_type": type(processor).__name__ if processor else None,
|
333 |
+
"model_type": type(model).__name__ if model else None,
|
334 |
+
"available_qwen_classes": available_classes,
|
335 |
+
"transformers_version": transformers.__version__
|
336 |
}
|