Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,27 +1,156 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
history = history or []
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
12 |
else:
|
13 |
-
|
|
|
|
|
14 |
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
with gr.Blocks() as demo:
|
19 |
-
gr.Markdown("#
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
|
25 |
-
clear.click(lambda: None, None, chatbot, queue=False)
|
26 |
|
27 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import os
|
3 |
+
import re
|
4 |
+
import time
|
5 |
+
import torch
|
6 |
+
import tempfile
|
7 |
+
from datetime import datetime
|
8 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
9 |
+
from gtts import gTTS
|
10 |
+
from PIL import Image
|
11 |
+
from diffusers import StableDiffusionPipeline
|
12 |
+
from PyPDF2 import PdfReader
|
13 |
+
import speech_recognition as sr
|
14 |
|
15 |
+
# ================== تنظیمات اولیه ==================
|
16 |
+
|
17 |
+
os.makedirs("conversations", exist_ok=True) # پوشه آرشیو گفتگوها
|
18 |
+
|
19 |
+
en_model_name = "HuggingFaceH4/zephyr-7b-beta"
|
20 |
+
fa_model_name = "HooshvareLab/gpt2-fa"
|
21 |
+
|
22 |
+
# بارگذاری مدلها
|
23 |
+
en_tokenizer = AutoTokenizer.from_pretrained(en_model_name)
|
24 |
+
en_model = AutoModelForCausalLM.from_pretrained(en_model_name, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32)
|
25 |
+
en_model.eval()
|
26 |
+
|
27 |
+
fa_tokenizer = AutoTokenizer.from_pretrained(fa_model_name)
|
28 |
+
fa_model = AutoModelForCausalLM.from_pretrained(fa_model_name)
|
29 |
+
fa_model.eval()
|
30 |
+
|
31 |
+
# بارگذاری مدل تولید تصویر
|
32 |
+
image_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32)
|
33 |
+
image_pipe = image_pipe.to("cuda" if torch.cuda.is_available() else "cpu")
|
34 |
+
|
35 |
+
# ================== توابع کمکی ==================
|
36 |
+
|
37 |
+
def detect_language(text):
|
38 |
+
return bool(re.search(r'[\u0600-\u06FF]', text))
|
39 |
+
|
40 |
+
def save_conversation(history, file_path):
|
41 |
+
with open(file_path, "w", encoding="utf-8") as f:
|
42 |
+
for user, bot in history:
|
43 |
+
f.write(f"User: {user}\nAssistant: {bot}\n\n")
|
44 |
+
|
45 |
+
def load_conversation(file_path):
|
46 |
+
history = []
|
47 |
+
with open(file_path, encoding="utf-8") as f:
|
48 |
+
content = f.read().strip().split("\n\n")
|
49 |
+
for turn in content:
|
50 |
+
if turn.strip():
|
51 |
+
parts = turn.split("\n")
|
52 |
+
if len(parts) == 2:
|
53 |
+
user = parts[0].replace("User: ", "")
|
54 |
+
bot = parts[1].replace("Assistant: ", "")
|
55 |
+
history.append((user, bot))
|
56 |
+
return history
|
57 |
+
|
58 |
+
def list_conversations():
|
59 |
+
files = os.listdir("conversations")
|
60 |
+
files.sort(reverse=True)
|
61 |
+
return [f for f in files if f.endswith(".txt")]
|
62 |
+
|
63 |
+
# ================== تابع اصلی چت ==================
|
64 |
+
|
65 |
+
def chat_with_bot(message, history, selected_file):
|
66 |
+
is_farsi = detect_language(message)
|
67 |
history = history or []
|
68 |
+
|
69 |
+
full_prompt = ""
|
70 |
+
for user, bot in history:
|
71 |
+
full_prompt += f"User: {user}\nAssistant: {bot}\n"
|
72 |
+
full_prompt += f"User: {message}\nAssistant:"
|
73 |
+
|
74 |
+
if is_farsi:
|
75 |
+
inputs = fa_tokenizer(full_prompt, return_tensors="pt", truncation=True)
|
76 |
+
outputs = fa_model.generate(**inputs, max_new_tokens=100, pad_token_id=fa_tokenizer.eos_token_id)
|
77 |
+
response = fa_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
78 |
else:
|
79 |
+
inputs = en_tokenizer(full_prompt, return_tensors="pt", truncation=True)
|
80 |
+
outputs = en_model.generate(**inputs, max_new_tokens=150, pad_token_id=en_tokenizer.eos_token_id)
|
81 |
+
response = en_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
82 |
|
83 |
+
response = response.split("Assistant:")[-1].strip()
|
84 |
+
history.append((message, response))
|
85 |
+
|
86 |
+
timestamp = selected_file if selected_file else datetime.now().strftime("%Y-%m-%d_%H-%M") + ".txt"
|
87 |
+
save_conversation(history, os.path.join("conversations", timestamp))
|
88 |
+
|
89 |
+
# تولید صدا
|
90 |
+
tts = gTTS(text=response, lang='fa' if is_farsi else 'en')
|
91 |
+
audio_path = tempfile.NamedTemporaryFile(suffix=".mp3", delete=False).name
|
92 |
+
tts.save(audio_path)
|
93 |
+
|
94 |
+
return history, history, audio_path, list_conversations(), timestamp
|
95 |
+
|
96 |
+
# ================== پردازش فایلها ==================
|
97 |
+
|
98 |
+
def handle_pdf(file):
|
99 |
+
reader = PdfReader(file.name)
|
100 |
+
text = "\n".join(page.extract_text() for page in reader.pages if page.extract_text())
|
101 |
+
summary = text[:1000] + ("..." if len(text) > 1000 else "")
|
102 |
+
return summary
|
103 |
+
|
104 |
+
def handle_image(file):
|
105 |
+
import pytesseract
|
106 |
+
image = Image.open(file.name)
|
107 |
+
return pytesseract.image_to_string(image, lang='fas+eng')
|
108 |
+
|
109 |
+
def handle_audio(file):
|
110 |
+
recognizer = sr.Recognizer()
|
111 |
+
with sr.AudioFile(file.name) as source:
|
112 |
+
audio_data = recognizer.record(source)
|
113 |
+
try:
|
114 |
+
text = recognizer.recognize_google(audio_data, language="fa-IR")
|
115 |
+
except:
|
116 |
+
text = "صدا قابل شناسایی نبود."
|
117 |
+
return text
|
118 |
+
|
119 |
+
def generate_image(prompt):
|
120 |
+
image = image_pipe(prompt).images[0]
|
121 |
+
return image
|
122 |
+
|
123 |
+
# ================== رابط گرافیکی ==================
|
124 |
|
125 |
with gr.Blocks() as demo:
|
126 |
+
gr.Markdown("# AIChat-FaEnPro | دستیار هوشمند فارسی-انگلیسی")
|
127 |
+
|
128 |
+
with gr.Row():
|
129 |
+
with gr.Column():
|
130 |
+
chatbot = gr.Chatbot()
|
131 |
+
msg = gr.Textbox(label="پیام شما")
|
132 |
+
audio_in = gr.Audio(source="microphone", type="filepath", label="ورودی صوتی")
|
133 |
+
submit = gr.Button("ارسال")
|
134 |
+
clear = gr.Button("پاک کردن گفتگو")
|
135 |
+
archive_dropdown = gr.Dropdown(label="گفتگوهای ذخیرهشده", choices=list_conversations(), interactive=True)
|
136 |
+
|
137 |
+
with gr.Column():
|
138 |
+
file_input = gr.File(label="آپلود فایل (PDF/تصویر/صدا)")
|
139 |
+
file_output = gr.Textbox(label="نتیجه پردازش فایل")
|
140 |
+
image_prompt = gr.Textbox(label="دستور تولید تصویر")
|
141 |
+
image_out = gr.Image(label="تصویر تولید شده")
|
142 |
+
audio_out = gr.Audio(label="صدای پاسخ")
|
143 |
+
|
144 |
+
state = gr.State([])
|
145 |
+
file_state = gr.State("")
|
146 |
+
|
147 |
+
submit.click(chat_with_bot, [msg, state, file_state], [chatbot, state, audio_out, archive_dropdown, file_state])
|
148 |
+
clear.click(lambda: ([], [], None, list_conversations(), ""), None, [chatbot, state, audio_out, archive_dropdown, file_state])
|
149 |
+
archive_dropdown.change(lambda f: (load_conversation(os.path.join("conversations", f)), f), [archive_dropdown], [state, file_state])
|
150 |
+
audio_in.change(lambda f, h, s: chat_with_bot(handle_audio(f), h, s), [audio_in, state, file_state], [chatbot, state, audio_out, archive_dropdown, file_state])
|
151 |
+
file_input.change(lambda f: handle_pdf(f) if f.name.endswith(".pdf") else handle_image(f) if f.type.startswith("image") else handle_audio(f), file_input, file_output)
|
152 |
+
image_prompt.submit(generate_image, image_prompt, image_out)
|
153 |
|
154 |
+
gr.Markdown("طراحی شده توسط شما، با قدرت ChatGPT")
|
|
|
155 |
|
156 |
demo.launch()
|