Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -21,6 +21,7 @@ from agent import (
|
|
| 21 |
)
|
| 22 |
from utils import parse_action, parse_file_content, read_python_module_structure
|
| 23 |
from datetime import datetime
|
|
|
|
| 24 |
now = datetime.now()
|
| 25 |
date_time_str = now.strftime("%Y-%m-%d %H:%M:%S")
|
| 26 |
|
|
@@ -30,31 +31,21 @@ client = InferenceClient(
|
|
| 30 |
|
| 31 |
############################################
|
| 32 |
|
| 33 |
-
|
| 34 |
VERBOSE = True
|
| 35 |
MAX_HISTORY = 100
|
| 36 |
-
#MODEL = "gpt-3.5-turbo" # "gpt-4"
|
| 37 |
-
|
| 38 |
|
| 39 |
def format_prompt(message, history):
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
prompt_template,
|
| 51 |
-
stop_tokens,
|
| 52 |
-
max_tokens,
|
| 53 |
-
purpose,
|
| 54 |
-
**prompt_kwargs,
|
| 55 |
-
):
|
| 56 |
-
seed = random.randint(1,1111111111111111)
|
| 57 |
-
print (seed)
|
| 58 |
generate_kwargs = dict(
|
| 59 |
temperature=1.0,
|
| 60 |
max_new_tokens=2096,
|
|
@@ -64,7 +55,6 @@ def run_gpt(
|
|
| 64 |
seed=seed,
|
| 65 |
)
|
| 66 |
|
| 67 |
-
|
| 68 |
content = PREFIX.format(
|
| 69 |
date_time_str=date_time_str,
|
| 70 |
purpose=purpose,
|
|
@@ -72,10 +62,9 @@ def run_gpt(
|
|
| 72 |
) + prompt_template.format(**prompt_kwargs)
|
| 73 |
if VERBOSE:
|
| 74 |
print(LOG_PROMPT.format(content))
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
#formatted_prompt = format_prompt(f
|
| 78 |
-
#formatted_prompt = format_prompt(f'{content}', history)
|
| 79 |
|
| 80 |
stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
| 81 |
resp = ""
|
|
@@ -86,7 +75,6 @@ def run_gpt(
|
|
| 86 |
print(LOG_RESPONSE.format(resp))
|
| 87 |
return resp
|
| 88 |
|
| 89 |
-
|
| 90 |
def compress_history(purpose, task, history, directory):
|
| 91 |
resp = run_gpt(
|
| 92 |
COMPRESS_HISTORY_PROMPT,
|
|
@@ -98,19 +86,18 @@ def compress_history(purpose, task, history, directory):
|
|
| 98 |
)
|
| 99 |
history = "observation: {}\n".format(resp)
|
| 100 |
return history
|
| 101 |
-
|
| 102 |
def call_search(purpose, task, history, directory, action_input):
|
| 103 |
print("CALLING SEARCH")
|
| 104 |
try:
|
| 105 |
-
|
| 106 |
if "http" in action_input:
|
| 107 |
if "<" in action_input:
|
| 108 |
action_input = action_input.strip("<")
|
| 109 |
if ">" in action_input:
|
| 110 |
action_input = action_input.strip(">")
|
| 111 |
-
|
| 112 |
response = i_s(action_input)
|
| 113 |
-
#response = google(search_return)
|
| 114 |
print(response)
|
| 115 |
history += "observation: search result is: {}\n".format(response)
|
| 116 |
else:
|
|
@@ -135,11 +122,10 @@ def call_main(purpose, task, history, directory, action_input):
|
|
| 135 |
if line.startswith("thought: "):
|
| 136 |
history += "{}\n".format(line)
|
| 137 |
elif line.startswith("action: "):
|
| 138 |
-
|
| 139 |
action_name, action_input = parse_action(line)
|
| 140 |
-
print
|
| 141 |
-
print
|
| 142 |
-
|
| 143 |
history += "{}\n".format(line)
|
| 144 |
if "COMPLETE" in action_name or "COMPLETE" in action_input:
|
| 145 |
task = "END"
|
|
@@ -148,12 +134,11 @@ def call_main(purpose, task, history, directory, action_input):
|
|
| 148 |
return action_name, action_input, history, task
|
| 149 |
else:
|
| 150 |
history += "{}\n".format(line)
|
| 151 |
-
#history += "observation: the following command did not produce any useful output: '{}', I need to check the commands syntax, or use a different command\n".format(line)
|
| 152 |
-
|
| 153 |
-
#return action_name, action_input, history, task
|
| 154 |
-
#assert False, "unknown action: {}".format(line)
|
| 155 |
-
return "MAIN", None, history, task
|
| 156 |
|
|
|
|
|
|
|
|
|
|
| 157 |
|
| 158 |
def call_set_task(purpose, task, history, directory, action_input):
|
| 159 |
task = run_gpt(
|
|
@@ -176,46 +161,43 @@ NAME_TO_FUNC = {
|
|
| 176 |
"UPDATE-TASK": call_set_task,
|
| 177 |
"SEARCH": call_search,
|
| 178 |
"COMPLETE": end_fn,
|
| 179 |
-
|
| 180 |
}
|
| 181 |
|
| 182 |
def run_action(purpose, task, history, directory, action_name, action_input):
|
| 183 |
print(f'action_name::{action_name}')
|
| 184 |
try:
|
| 185 |
if "RESPONSE" in action_name or "COMPLETE" in action_name:
|
| 186 |
-
action_name="COMPLETE"
|
| 187 |
-
task="END"
|
| 188 |
return action_name, "COMPLETE", history, task
|
| 189 |
-
|
| 190 |
# compress the history when it is long
|
| 191 |
if len(history.split("\n")) > MAX_HISTORY:
|
| 192 |
if VERBOSE:
|
| 193 |
print("COMPRESSING HISTORY")
|
| 194 |
history = compress_history(purpose, task, history, directory)
|
| 195 |
if not action_name in NAME_TO_FUNC:
|
| 196 |
-
action_name="MAIN"
|
| 197 |
if action_name == "" or action_name == None:
|
| 198 |
-
action_name="MAIN"
|
| 199 |
assert action_name in NAME_TO_FUNC
|
| 200 |
-
|
| 201 |
print("RUN: ", action_name, action_input)
|
| 202 |
return NAME_TO_FUNC[action_name](purpose, task, history, directory, action_input)
|
| 203 |
except Exception as e:
|
| 204 |
history += "observation: the previous command did not produce any useful output, I need to check the commands syntax, or use a different command\n"
|
| 205 |
-
|
| 206 |
return "MAIN", None, history, task
|
| 207 |
|
| 208 |
-
def run(purpose,history):
|
| 209 |
-
|
| 210 |
-
#print(
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
directory="./"
|
| 214 |
if history:
|
| 215 |
-
history=str(history).strip("[]")
|
| 216 |
if not history:
|
| 217 |
history = ""
|
| 218 |
-
|
| 219 |
action_name = "UPDATE-TASK" if task is None else "MAIN"
|
| 220 |
action_input = None
|
| 221 |
while True:
|
|
@@ -237,40 +219,38 @@ def run(purpose,history):
|
|
| 237 |
action_input,
|
| 238 |
)
|
| 239 |
yield (history)
|
| 240 |
-
#yield ("",[(purpose,history)])
|
| 241 |
if task == "END":
|
| 242 |
return (history)
|
| 243 |
-
#return ("", [(purpose,history)])
|
| 244 |
-
|
| 245 |
-
|
| 246 |
|
| 247 |
################################################
|
| 248 |
|
| 249 |
def format_prompt(message, history):
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
|
|
|
| 257 |
"WEB_DEV",
|
| 258 |
"AI_SYSTEM_PROMPT",
|
| 259 |
"PYTHON_CODE_DEV"
|
| 260 |
]
|
| 261 |
-
def generate(
|
| 262 |
-
prompt, history, agent_name=agents[0], sys_prompt="", temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
|
| 263 |
-
):
|
| 264 |
-
seed = random.randint(1,1111111111111111)
|
| 265 |
|
| 266 |
-
|
|
|
|
|
|
|
|
|
|
| 267 |
if agent_name == "WEB_DEV":
|
| 268 |
agent = prompts.WEB_DEV
|
| 269 |
if agent_name == "AI_SYSTEM_PROMPT":
|
| 270 |
agent = prompts.AI_SYSTEM_PROMPT
|
| 271 |
if agent_name == "PYTHON_CODE_DEV":
|
| 272 |
-
agent = prompts.PYTHON_CODE_DEV
|
| 273 |
-
system_prompt=agent
|
| 274 |
temperature = float(temperature)
|
| 275 |
if temperature < 1e-2:
|
| 276 |
temperature = 1e-2
|
|
@@ -294,14 +274,13 @@ def generate(
|
|
| 294 |
yield output
|
| 295 |
return output
|
| 296 |
|
| 297 |
-
|
| 298 |
-
additional_inputs=[
|
| 299 |
gr.Dropdown(
|
| 300 |
label="Agents",
|
| 301 |
-
choices=[s for s in
|
| 302 |
-
value=
|
| 303 |
interactive=True,
|
| 304 |
-
|
| 305 |
gr.Textbox(
|
| 306 |
label="System Prompt",
|
| 307 |
max_lines=1,
|
|
@@ -314,143 +293,48 @@ additional_inputs=[
|
|
| 314 |
maximum=1.0,
|
| 315 |
step=0.05,
|
| 316 |
interactive=True,
|
| 317 |
-
info="Higher values
|
| 318 |
),
|
| 319 |
-
|
| 320 |
gr.Slider(
|
| 321 |
-
label="Max
|
| 322 |
-
value=
|
| 323 |
-
minimum=
|
| 324 |
-
maximum=
|
| 325 |
step=64,
|
| 326 |
interactive=True,
|
| 327 |
-
info="The maximum
|
| 328 |
),
|
| 329 |
gr.Slider(
|
| 330 |
-
label="Top-p (
|
| 331 |
value=0.90,
|
| 332 |
minimum=0.0,
|
| 333 |
maximum=1,
|
| 334 |
step=0.05,
|
| 335 |
interactive=True,
|
| 336 |
-
info="Higher values sample more low-probability tokens",
|
| 337 |
),
|
| 338 |
gr.Slider(
|
| 339 |
-
label="Repetition
|
| 340 |
value=1.2,
|
| 341 |
minimum=1.0,
|
| 342 |
maximum=2.0,
|
| 343 |
step=0.05,
|
| 344 |
interactive=True,
|
| 345 |
-
info="Penalize repeated tokens",
|
| 346 |
-
)
|
| 347 |
-
|
| 348 |
-
|
| 349 |
]
|
| 350 |
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
]
|
| 364 |
|
| 365 |
-
|
| 366 |
-
gr.ChatInterface(
|
| 367 |
-
fn=run,
|
| 368 |
-
chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
|
| 369 |
-
title="Mixtral 46.7B\nMicro-Agent\nInternet Search <br> development test",
|
| 370 |
-
examples=examples,
|
| 371 |
-
concurrency_limit=20,
|
| 372 |
-
with gr.Blocks() as ifacea:
|
| 373 |
-
gr.HTML("""TEST""")
|
| 374 |
-
ifacea.launch()
|
| 375 |
-
).launch()
|
| 376 |
-
with gr.Blocks() as iface:
|
| 377 |
-
#chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
|
| 378 |
-
chatbot=gr.Chatbot()
|
| 379 |
-
msg = gr.Textbox()
|
| 380 |
-
with gr.Row():
|
| 381 |
-
submit_b = gr.Button()
|
| 382 |
-
clear = gr.ClearButton([msg, chatbot])
|
| 383 |
-
submit_b.click(run, [msg,chatbot],[msg,chatbot])
|
| 384 |
-
msg.submit(run, [msg, chatbot], [msg, chatbot])
|
| 385 |
-
iface.launch()
|
| 386 |
-
'''
|
| 387 |
-
gr.ChatInterface(
|
| 388 |
-
fn=run,
|
| 389 |
-
chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
|
| 390 |
-
title="Mixtral 46.7B\nMicro-Agent\nInternet Search <br> development test",
|
| 391 |
-
examples=examples,
|
| 392 |
-
concurrency_limit=20,
|
| 393 |
-
).launch(show_api=False)
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
Implementation of Next Steps:
|
| 397 |
-
|
| 398 |
-
Terminal Integration:
|
| 399 |
-
|
| 400 |
-
Install Libraries: Install either streamlit-terminal or gradio-terminal depending on your chosen framework.
|
| 401 |
-
Integrate the Terminal: Use the library's functions to embed a terminal component within your Streamlit or Gradio app.
|
| 402 |
-
Capture Input: Capture the user's input from the terminal and pass it to your command execution function.
|
| 403 |
-
Display Output: Display the output of the terminal commands, including both standard output and errors.
|
| 404 |
-
Code Generation:
|
| 405 |
-
|
| 406 |
-
LLM Selection: Choose a Hugging Face Transformer model that is suitable for code generation (e.g., google/flan-t5-xl, Salesforce/codet5-base, microsoft/CodeGPT-small).
|
| 407 |
-
Prompt Engineering: Develop effective prompts for the LLM to generate code based on natural language instructions.
|
| 408 |
-
Code Translation Function: Create a function that takes natural language input, passes it to the LLM with the appropriate prompt, and then returns the generated code.
|
| 409 |
-
Code Correction: You can explore ways to automatically correct code errors, perhaps using a combination of syntax checking and LLM assistance.
|
| 410 |
-
Workspace Explorer:
|
| 411 |
-
|
| 412 |
-
Streamlit or Gradio Filesystem Access: Use Streamlit's st.file_uploader or Gradio's gr.File component to allow users to upload files.
|
| 413 |
-
File Management: Implement functions to create, edit, and delete files and directories within the workspace.
|
| 414 |
-
Display Files: Use Streamlit's st.code or Gradio's gr.File component to display the contents of files in the workspace.
|
| 415 |
-
Directory Structure: Display the directory structure of the workspace using a tree-like representation.
|
| 416 |
-
Dependency Management:
|
| 417 |
-
|
| 418 |
-
Package Installation: Create a function that takes a package name as input, installs it using pip, and updates the requirements.txt file.
|
| 419 |
-
Workspace Population: Develop a function to create files and directories in the workspace based on installed packages.
|
| 420 |
-
Application Build and Launch:
|
| 421 |
-
|
| 422 |
-
Build Logic: Develop a function to build the web app based on the user's code and dependencies.
|
| 423 |
-
Launch Functionality: Implement a mechanism to launch the built app.
|
| 424 |
-
Error Correction: Identify and correct errors during the build and launch process.
|
| 425 |
-
Automated Assistance: Provide automated assistance during the build and launch process, with a gradient slider to adjust the level of user override.
|
| 426 |
-
|
| 427 |
-
Recommendations, Enhancements, Optimizations, and Workflow:
|
| 428 |
-
|
| 429 |
-
1. LLM Selection for Code Generation:
|
| 430 |
-
* **Google/Flan-T5-XL:** Excellent for code generation, particularly for Python.
|
| 431 |
-
* **Salesforce/CodeT5-Base:** Strong for code generation, with a focus on code summarization and translation.
|
| 432 |
-
* **Microsoft/CodeGPT-Small:** A smaller model that is suitable for code generation tasks, especially if you have limited computational resources.
|
| 433 |
-
|
| 434 |
-
2. Prompt Engineering for Code Generation:
|
| 435 |
-
* **Contextual Prompts:** Provide the LLM with as much context as possible, including the desired programming language, libraries, and any specific requirements.
|
| 436 |
-
* **Code Snippets:** If possible, include code snippets as part of the prompt to guide the LLM's code generation.
|
| 437 |
-
* **Iterative Refinement:** Use iterative prompting to refine the generated code. Start with a basic prompt and then provide feedback to the LLM to improve the code.
|
| 438 |
-
|
| 439 |
-
3. Workspace Exploration:
|
| 440 |
-
* **Tree-Like View:** Use a tree-like representation to display the workspace's directory structure.
|
| 441 |
-
* **Search Functionality:** Implement a search bar to allow users to quickly find specific files or directories.
|
| 442 |
-
* **Code Highlighting:** Provide code highlighting for files in the workspace to improve readability.
|
| 443 |
-
|
| 444 |
-
4. Dependency Management:
|
| 445 |
-
* **Virtual Environments:** Use virtual environments to isolate project dependencies and prevent conflicts.
|
| 446 |
-
* **Automatic Updates:** Implement a mechanism to automatically update dependencies when new versions are available.
|
| 447 |
-
* **Dependency Locking:** Use tools like `pip-tools` or `poetry` to lock dependencies to specific versions, ensuring consistent builds.
|
| 448 |
-
|
| 449 |
-
5. Application Build and Launch:
|
| 450 |
-
* **Build Tool Integration:** Consider integrating a build tool like `poetry` or `pipenv` into your workflow to automate the build process.
|
| 451 |
-
* **Containerization:** Containerize the app using Docker to ensure consistent deployments across different environments.
|
| 452 |
-
* **Deployment Automation:** Explore tools like `Heroku`, `AWS Elastic Beanstalk`, or `Google App Engine` to automate the deployment process.
|
| 453 |
-
|
| 454 |
-
6. Automated Assistance:
|
| 455 |
-
* **Error Detection and Correction:** Implement a system that can detect common coding errors and suggest corrections.
|
| 456 |
-
* **Code Completion:** Use an LLM to provide code completion suggestions as the user types.
|
|
|
|
| 21 |
)
|
| 22 |
from utils import parse_action, parse_file_content, read_python_module_structure
|
| 23 |
from datetime import datetime
|
| 24 |
+
|
| 25 |
now = datetime.now()
|
| 26 |
date_time_str = now.strftime("%Y-%m-%d %H:%M:%S")
|
| 27 |
|
|
|
|
| 31 |
|
| 32 |
############################################
|
| 33 |
|
|
|
|
| 34 |
VERBOSE = True
|
| 35 |
MAX_HISTORY = 100
|
| 36 |
+
# MODEL = "gpt-3.5-turbo" # "gpt-4"
|
|
|
|
| 37 |
|
| 38 |
def format_prompt(message, history):
|
| 39 |
+
prompt = "<s>"
|
| 40 |
+
for user_prompt, bot_response in history:
|
| 41 |
+
prompt += f"[INST] {user_prompt} [/INST]"
|
| 42 |
+
prompt += f" {bot_response}</s> "
|
| 43 |
+
prompt += f"[INST] {message} [/INST]"
|
| 44 |
+
return prompt
|
| 45 |
+
|
| 46 |
+
def run_gpt(prompt_template, stop_tokens, max_tokens, purpose, **prompt_kwargs):
|
| 47 |
+
seed = random.randint(1, 1111111111111111)
|
| 48 |
+
print(seed)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
generate_kwargs = dict(
|
| 50 |
temperature=1.0,
|
| 51 |
max_new_tokens=2096,
|
|
|
|
| 55 |
seed=seed,
|
| 56 |
)
|
| 57 |
|
|
|
|
| 58 |
content = PREFIX.format(
|
| 59 |
date_time_str=date_time_str,
|
| 60 |
purpose=purpose,
|
|
|
|
| 62 |
) + prompt_template.format(**prompt_kwargs)
|
| 63 |
if VERBOSE:
|
| 64 |
print(LOG_PROMPT.format(content))
|
| 65 |
+
|
| 66 |
+
# formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
|
| 67 |
+
# formatted_prompt = format_prompt(f'{content}', history)
|
|
|
|
| 68 |
|
| 69 |
stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
| 70 |
resp = ""
|
|
|
|
| 75 |
print(LOG_RESPONSE.format(resp))
|
| 76 |
return resp
|
| 77 |
|
|
|
|
| 78 |
def compress_history(purpose, task, history, directory):
|
| 79 |
resp = run_gpt(
|
| 80 |
COMPRESS_HISTORY_PROMPT,
|
|
|
|
| 86 |
)
|
| 87 |
history = "observation: {}\n".format(resp)
|
| 88 |
return history
|
| 89 |
+
|
| 90 |
def call_search(purpose, task, history, directory, action_input):
|
| 91 |
print("CALLING SEARCH")
|
| 92 |
try:
|
|
|
|
| 93 |
if "http" in action_input:
|
| 94 |
if "<" in action_input:
|
| 95 |
action_input = action_input.strip("<")
|
| 96 |
if ">" in action_input:
|
| 97 |
action_input = action_input.strip(">")
|
| 98 |
+
|
| 99 |
response = i_s(action_input)
|
| 100 |
+
# response = google(search_return)
|
| 101 |
print(response)
|
| 102 |
history += "observation: search result is: {}\n".format(response)
|
| 103 |
else:
|
|
|
|
| 122 |
if line.startswith("thought: "):
|
| 123 |
history += "{}\n".format(line)
|
| 124 |
elif line.startswith("action: "):
|
|
|
|
| 125 |
action_name, action_input = parse_action(line)
|
| 126 |
+
print(f'ACTION_NAME :: {action_name}')
|
| 127 |
+
print(f'ACTION_INPUT :: {action_input}')
|
| 128 |
+
|
| 129 |
history += "{}\n".format(line)
|
| 130 |
if "COMPLETE" in action_name or "COMPLETE" in action_input:
|
| 131 |
task = "END"
|
|
|
|
| 134 |
return action_name, action_input, history, task
|
| 135 |
else:
|
| 136 |
history += "{}\n".format(line)
|
| 137 |
+
# history += "observation: the following command did not produce any useful output: '{}', I need to check the commands syntax, or use a different command\n".format(line)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
|
| 139 |
+
# return action_name, action_input, history, task
|
| 140 |
+
# assert False, "unknown action: {}".format(line)
|
| 141 |
+
return "MAIN", None, history, task
|
| 142 |
|
| 143 |
def call_set_task(purpose, task, history, directory, action_input):
|
| 144 |
task = run_gpt(
|
|
|
|
| 161 |
"UPDATE-TASK": call_set_task,
|
| 162 |
"SEARCH": call_search,
|
| 163 |
"COMPLETE": end_fn,
|
|
|
|
| 164 |
}
|
| 165 |
|
| 166 |
def run_action(purpose, task, history, directory, action_name, action_input):
|
| 167 |
print(f'action_name::{action_name}')
|
| 168 |
try:
|
| 169 |
if "RESPONSE" in action_name or "COMPLETE" in action_name:
|
| 170 |
+
action_name = "COMPLETE"
|
| 171 |
+
task = "END"
|
| 172 |
return action_name, "COMPLETE", history, task
|
| 173 |
+
|
| 174 |
# compress the history when it is long
|
| 175 |
if len(history.split("\n")) > MAX_HISTORY:
|
| 176 |
if VERBOSE:
|
| 177 |
print("COMPRESSING HISTORY")
|
| 178 |
history = compress_history(purpose, task, history, directory)
|
| 179 |
if not action_name in NAME_TO_FUNC:
|
| 180 |
+
action_name = "MAIN"
|
| 181 |
if action_name == "" or action_name == None:
|
| 182 |
+
action_name = "MAIN"
|
| 183 |
assert action_name in NAME_TO_FUNC
|
| 184 |
+
|
| 185 |
print("RUN: ", action_name, action_input)
|
| 186 |
return NAME_TO_FUNC[action_name](purpose, task, history, directory, action_input)
|
| 187 |
except Exception as e:
|
| 188 |
history += "observation: the previous command did not produce any useful output, I need to check the commands syntax, or use a different command\n"
|
|
|
|
| 189 |
return "MAIN", None, history, task
|
| 190 |
|
| 191 |
+
def run(purpose, history):
|
| 192 |
+
# print(purpose)
|
| 193 |
+
# print(hist)
|
| 194 |
+
task = None
|
| 195 |
+
directory = "./"
|
|
|
|
| 196 |
if history:
|
| 197 |
+
history = str(history).strip("[]")
|
| 198 |
if not history:
|
| 199 |
history = ""
|
| 200 |
+
|
| 201 |
action_name = "UPDATE-TASK" if task is None else "MAIN"
|
| 202 |
action_input = None
|
| 203 |
while True:
|
|
|
|
| 219 |
action_input,
|
| 220 |
)
|
| 221 |
yield (history)
|
| 222 |
+
# yield ("",[(purpose,history)])
|
| 223 |
if task == "END":
|
| 224 |
return (history)
|
| 225 |
+
# return ("", [(purpose,history)])
|
|
|
|
|
|
|
| 226 |
|
| 227 |
################################################
|
| 228 |
|
| 229 |
def format_prompt(message, history):
|
| 230 |
+
prompt = "<s>"
|
| 231 |
+
for user_prompt, bot_response in history:
|
| 232 |
+
prompt += f"[INST] {user_prompt} [/INST]"
|
| 233 |
+
prompt += f" {bot_response}</s> "
|
| 234 |
+
prompt += f"[INST] {message} [/INST]"
|
| 235 |
+
return prompt
|
| 236 |
+
|
| 237 |
+
AGENTS = [
|
| 238 |
"WEB_DEV",
|
| 239 |
"AI_SYSTEM_PROMPT",
|
| 240 |
"PYTHON_CODE_DEV"
|
| 241 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 242 |
|
| 243 |
+
def generate(prompt, history, agent_name=AGENTS[0], sys_prompt="", temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0):
|
| 244 |
+
seed = random.randint(1, 1111111111111111)
|
| 245 |
+
|
| 246 |
+
agent = prompts.WEB_DEV
|
| 247 |
if agent_name == "WEB_DEV":
|
| 248 |
agent = prompts.WEB_DEV
|
| 249 |
if agent_name == "AI_SYSTEM_PROMPT":
|
| 250 |
agent = prompts.AI_SYSTEM_PROMPT
|
| 251 |
if agent_name == "PYTHON_CODE_DEV":
|
| 252 |
+
agent = prompts.PYTHON_CODE_DEV
|
| 253 |
+
system_prompt = agent
|
| 254 |
temperature = float(temperature)
|
| 255 |
if temperature < 1e-2:
|
| 256 |
temperature = 1e-2
|
|
|
|
| 274 |
yield output
|
| 275 |
return output
|
| 276 |
|
| 277 |
+
additional_inputs = [
|
|
|
|
| 278 |
gr.Dropdown(
|
| 279 |
label="Agents",
|
| 280 |
+
choices=[s for s in AGENTS],
|
| 281 |
+
value=AGENTS[0],
|
| 282 |
interactive=True,
|
| 283 |
+
),
|
| 284 |
gr.Textbox(
|
| 285 |
label="System Prompt",
|
| 286 |
max_lines=1,
|
|
|
|
| 293 |
maximum=1.0,
|
| 294 |
step=0.05,
|
| 295 |
interactive=True,
|
| 296 |
+
info="Higher values generate more diverse outputs.",
|
| 297 |
),
|
|
|
|
| 298 |
gr.Slider(
|
| 299 |
+
label="Max New Tokens",
|
| 300 |
+
value=2048,
|
| 301 |
+
minimum=64,
|
| 302 |
+
maximum=4096,
|
| 303 |
step=64,
|
| 304 |
interactive=True,
|
| 305 |
+
info="The maximum number of new tokens to generate.",
|
| 306 |
),
|
| 307 |
gr.Slider(
|
| 308 |
+
label="Top-p (Nucleus Sampling)",
|
| 309 |
value=0.90,
|
| 310 |
minimum=0.0,
|
| 311 |
maximum=1,
|
| 312 |
step=0.05,
|
| 313 |
interactive=True,
|
| 314 |
+
info="Higher values sample more low-probability tokens.",
|
| 315 |
),
|
| 316 |
gr.Slider(
|
| 317 |
+
label="Repetition Penalty",
|
| 318 |
value=1.2,
|
| 319 |
minimum=1.0,
|
| 320 |
maximum=2.0,
|
| 321 |
step=0.05,
|
| 322 |
interactive=True,
|
| 323 |
+
info="Penalize repeated tokens.",
|
| 324 |
+
)
|
|
|
|
|
|
|
| 325 |
]
|
| 326 |
|
| 327 |
+
customCSS = """
|
| 328 |
+
#component-7 {
|
| 329 |
+
height: 1600px;
|
| 330 |
+
flex-grow: 4;
|
| 331 |
+
}
|
| 332 |
+
"""
|
| 333 |
+
|
| 334 |
+
with gr.Blocks(theme='ParityError/Interstellar') as demo:
|
| 335 |
+
gr.ChatInterface(
|
| 336 |
+
generate,
|
| 337 |
+
additional_inputs=additional_inputs,
|
| 338 |
+
)
|
|
|
|
| 339 |
|
| 340 |
+
demo.queue().launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|