Spaces:
Running
Running
File size: 42,935 Bytes
4482b40 06adbe1 4482b40 e6ec5b6 303a80b d73459b e93b0ba 4482b40 f48943e 43037cf 4482b40 e6ec5b6 829ae99 43037cf f48943e 43037cf 06adbe1 43037cf 66507ca e2928bf 4482b40 06adbe1 4b3b034 e2928bf e93b0ba f48943e 43037cf e6ec5b6 b326353 e6ec5b6 b326353 e6ec5b6 b326353 4482b40 f48943e 4482b40 b326353 4482b40 e6ec5b6 e2928bf e6ec5b6 e2928bf cc30771 e93b0ba 06adbe1 e93b0ba e2928bf e93b0ba 067985f e93b0ba e2928bf e93b0ba 06adbe1 dd12997 f48943e e93b0ba e2928bf e6ec5b6 d73459b 06adbe1 cc30771 6baa604 06adbe1 d73459b 66507ca d73459b e2928bf f48943e 7c42209 66507ca 303a80b 06adbe1 66507ca e6ec5b6 06adbe1 4482b40 06adbe1 4482b40 e2928bf 66507ca f48943e 66507ca f48943e 66507ca f48943e 66507ca f48943e 66507ca f48943e 66507ca f48943e 66507ca af05e7c 66507ca f48943e 66507ca f48943e 66507ca f48943e 303a80b af05e7c 303a80b af05e7c 303a80b af05e7c 303a80b af05e7c 303a80b af05e7c 303a80b af05e7c 303a80b af05e7c 303a80b af05e7c 303a80b af05e7c 303a80b af05e7c 66507ca af05e7c 66507ca f48943e 66507ca f48943e 66507ca f48943e 66507ca f48943e 66507ca f48943e 66507ca f48943e 66507ca f48943e 66507ca f48943e 66507ca f48943e 66507ca f48943e 66507ca f48943e 66507ca 3276ce9 66507ca f48943e 303a80b 66507ca 303a80b 66507ca f48943e 66507ca f48943e 66507ca f48943e 66507ca f48943e 66507ca f48943e 66507ca f48943e 66507ca f48943e 66507ca 303a80b 66507ca f48943e 66507ca f48943e 66507ca 3276ce9 f7e0713 66507ca 6cc42f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 |
import io
import os
import re
import time
import requests
from typing import Any, Dict, List, Optional, Set, Union
from difflib import get_close_matches
from pathlib import Path
from itertools import islice
from functools import partial
from multiprocessing.pool import ThreadPool
from queue import Queue, Empty
from typing import Callable, Iterable, Iterator, Optional, TypeVar
import gradio as gr
import pandas as pd
import requests.exceptions
from huggingface_hub import InferenceClient, create_repo, DatasetCard
model_id = "microsoft/Phi-3-mini-4k-instruct"
client = InferenceClient(model_id)
save_dataset_hf_token = os.environ.get("SAVE_DATASET_HF_TOKEN")
MAX_TOTAL_NB_ITEMS = 100 # almost infinite, don't judge me (actually it's because gradio needs a fixed number of components)
MAX_NB_ITEMS_PER_GENERATION_CALL = 10
NUM_ROWS = 100
NUM_VARIANTS = 10
NAMESPACE = "infinite-dataset-hub"
URL = "https://huggingface.co/spaces/infinite-dataset-hub/infinite-dataset-hub"
GENERATE_DATASET_NAMES_FOR_SEARCH_QUERY = (
"A Machine Learning Practioner is looking for a dataset that matches '{search_query}'. "
f"Generate a list of {MAX_NB_ITEMS_PER_GENERATION_CALL} names of quality datasets that don't exist but sound plausible and would "
"be helpful. Feel free to reuse words from the query '{search_query}' to name the datasets. "
"Every dataset should be about '{search_query}' and have descriptive tags/keywords including the ML task name associated with the dataset (classification, regression, anomaly detection, etc.). Use the following format:\n1. DatasetName1 (tag1, tag2, tag3)\n1. DatasetName2 (tag1, tag2, tag3)"
)
GENERATE_DATASET_CONTENT_FOR_SEARCH_QUERY_AND_NAME_AND_TAGS = (
"An ML practitioner is looking for a dataset CSV after the query '{search_query}'. "
"Generate the first 5 rows of a plausible and quality CSV for the dataset '{dataset_name}'. "
"You can get inspiration from related keywords '{tags}' but most importantly the dataset should correspond to the query '{search_query}'. "
"Focus on quality text content and use a 'label' or 'labels' column if it makes sense (invent labels, avoid reusing the keywords, be accurate while labelling texts). "
"Reply using a short description of the dataset with title **Dataset Description:** followed by the CSV content in a code block and with title **CSV Content Preview:**."
)
GENERATE_MORE_ROWS = "Can you give me 10 additional samples in CSV format as well? Use the same CSV header '{csv_header}'."
GENERATE_VARIANTS_WITH_RARITY_AND_LABEL = "Focus on generating samples for the label '{label}' and ideally generate {rarity} samples."
GENERATE_VARIANTS_WITH_RARITY = "Focus on generating {rarity} samples."
RARITIES = ["pretty obvious", "common/regular", "unexpected but useful", "uncommon but still plausible", "rare/niche but still plausible"]
LONG_RARITIES = [
"obvious",
"expected",
"common",
"regular",
"unexpected but useful"
"original but useful",
"specific but not far-fetched",
"uncommon but still plausible",
"rare but still plausible",
"very niche but still plausible",
]
landing_page_datasets_generated_text = """
1. NewsEventsPredict (classification, media, trend)
2. FinancialForecast (economy, stocks, regression)
3. HealthMonitor (science, real-time, anomaly detection)
4. SportsAnalysis (classification, performance, player tracking)
5. SciLiteracyTools (language modeling, science literacy, text classification)
6. RetailSalesAnalyzer (consumer behavior, sales trend, segmentation)
7. SocialSentimentEcho (social media, emotion analysis, clustering)
8. NewsEventTracker (classification, public awareness, topical clustering)
9. HealthVitalSigns (anomaly detection, biometrics, prediction)
10. GameStockPredict (classification, finance, sports contingency)
"""
default_output = landing_page_datasets_generated_text.strip().split("\n")
assert len(default_output) == MAX_NB_ITEMS_PER_GENERATION_CALL
DATASET_CARD_CONTENT = """
---
license: mit
tags:
- infinite-dataset-hub
- synthetic
---
{title}
_Note: This is an AI-generated dataset so its content may be inaccurate or false_
{content}
**Source of the data:**
The dataset was generated using the [Infinite Dataset Hub]({url}) and {model_id} using the query '{search_query}':
- **Dataset Generation Page**: {dataset_url}
- **Model**: https://huggingface.co/{model_id}
- **More Datasets**: https://huggingface.co/datasets?other=infinite-dataset-hub
"""
css = """
a {
color: var(--body-text-color);
}
.datasetButton {
justify-content: start;
justify-content: left;
}
.tags {
font-size: var(--button-small-text-size);
color: var(--body-text-color-subdued);
}
.topButton {
justify-content: start;
justify-content: left;
text-align: left;
background: transparent;
box-shadow: none;
padding-bottom: 0;
}
.topButton::before {
content: url("data:image/svg+xml,%3Csvg style='color: rgb(209 213 219)' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink' aria-hidden='true' focusable='false' role='img' width='1em' height='1em' preserveAspectRatio='xMidYMid meet' viewBox='0 0 25 25'%3E%3Cellipse cx='12.5' cy='5' fill='currentColor' fill-opacity='0.25' rx='7.5' ry='2'%3E%3C/ellipse%3E%3Cpath d='M12.5 15C16.6421 15 20 14.1046 20 13V20C20 21.1046 16.6421 22 12.5 22C8.35786 22 5 21.1046 5 20V13C5 14.1046 8.35786 15 12.5 15Z' fill='currentColor' opacity='0.5'%3E%3C/path%3E%3Cpath d='M12.5 7C16.6421 7 20 6.10457 20 5V11.5C20 12.6046 16.6421 13.5 12.5 13.5C8.35786 13.5 5 12.6046 5 11.5V5C5 6.10457 8.35786 7 12.5 7Z' fill='currentColor' opacity='0.5'%3E%3C/path%3E%3Cpath d='M5.23628 12C5.08204 12.1598 5 12.8273 5 13C5 14.1046 8.35786 15 12.5 15C16.6421 15 20 14.1046 20 13C20 12.8273 19.918 12.1598 19.7637 12C18.9311 12.8626 15.9947 13.5 12.5 13.5C9.0053 13.5 6.06886 12.8626 5.23628 12Z' fill='currentColor'%3E%3C/path%3E%3C/svg%3E");
margin-right: .25rem;
margin-left: -.125rem;
margin-top: .25rem;
}
.bottomButton {
justify-content: start;
justify-content: left;
text-align: left;
background: transparent;
box-shadow: none;
font-size: var(--button-small-text-size);
color: var(--body-text-color-subdued);
padding-top: 0;
align-items: baseline;
}
.bottomButton::before {
content: 'tags:';
margin-right: .25rem;
}
.buttonsGroup {
background: transparent;
}
.buttonsGroup:hover {
background: var(--input-background-fill);
}
.buttonsGroup div {
background: transparent;
}
.insivibleButtonGroup {
display: none;
}
@keyframes placeHolderShimmer{
0%{
background-position: -468px 0
}
100%{
background-position: 468px 0
}
}
.linear-background {
animation-duration: 1s;
animation-fill-mode: forwards;
animation-iteration-count: infinite;
animation-name: placeHolderShimmer;
animation-timing-function: linear;
background-image: linear-gradient(to right, var(--body-text-color-subdued) 8%, #dddddd11 18%, var(--body-text-color-subdued) 33%);
background-size: 1000px 104px;
color: transparent;
background-clip: text;
}
.settings {
background: transparent;
}
.settings button span {
color: var(--body-text-color-subdued);
}
"""
with gr.Blocks(css=css) as demo:
generated_texts_state = gr.State((landing_page_datasets_generated_text,))
with gr.Column() as search_page:
with gr.Row():
with gr.Column(scale=10):
gr.Markdown(
"# 🤗 Infinite Dataset Hub ♾️\n\n"
"An endless catalog of datasets, created just for you by an AI model.\n\n"
)
with gr.Row():
search_bar = gr.Textbox(max_lines=1, placeholder="Search datasets, get infinite results", show_label=False, container=False, scale=9)
search_button = gr.Button("🔍", variant="primary", scale=1)
button_groups: list[gr.Group] = []
buttons: list[gr.Button] = []
for i in range(MAX_TOTAL_NB_ITEMS):
if i < len(default_output):
line = default_output[i]
dataset_name, tags = line.split(".", 1)[1].strip(" )").split(" (", 1)
group_classes = "buttonsGroup"
dataset_name_classes = "topButton"
tags_classes = "bottomButton"
else:
dataset_name, tags = "⬜⬜⬜⬜⬜⬜", "░░░░, ░░░░, ░░░░"
group_classes = "buttonsGroup insivibleButtonGroup"
dataset_name_classes = "topButton linear-background"
tags_classes = "bottomButton linear-background"
with gr.Group(elem_classes=group_classes) as button_group:
button_groups.append(button_group)
buttons.append(gr.Button(dataset_name, elem_classes=dataset_name_classes))
buttons.append(gr.Button(tags, elem_classes=tags_classes))
load_more_datasets = gr.Button("Load more datasets") # TODO: dosable when reaching end of page
gr.Markdown(f"_powered by [{model_id}](https://huggingface.co/{model_id})_")
with gr.Column(scale=4, min_width="200px"):
with gr.Accordion("Settings", open=False, elem_classes="settings"):
gr.Markdown("Save datasets to your account")
gr.LoginButton()
select_namespace_dropdown = gr.Dropdown(choices=[NAMESPACE], value=NAMESPACE, label="Select user or organization", visible=False)
gr.Markdown("Dataset Refinement Settings")
refinement_mode = gr.Radio(
["sourceless", "sourced"],
value="sourceless",
label="Refinement Mode",
info="Choose between AI-only refinement or source-based refinement"
)
with gr.Group(visible=False) as source_group:
source_type = gr.Dropdown(
choices=["csv_url", "xlsx_url", "local_csv", "local_xlsx"],
value="csv_url",
label="Source Type"
)
source_path = gr.Textbox(
label="Source Path/URL",
placeholder="Enter URL or local file path"
)
load_source_button = gr.Button("Load Source")
source_status = gr.Markdown("")
gr.Markdown("Save datasets as public or private datasets")
visibility_radio = gr.Radio(["public", "private"], value="public", container=False, interactive=False)
with gr.Column(visible=False) as dataset_page:
gr.Markdown(
"# 🤗 Infinite Dataset Hub ♾️\n\n"
"An endless catalog of datasets, created just for you.\n\n"
)
dataset_title = gr.Markdown()
gr.Markdown("_Note: This is an AI-generated dataset so its content may be inaccurate or false_")
dataset_content = gr.Markdown()
generate_full_dataset_button = gr.Button("Generate Full Dataset", variant="primary")
dataset_dataframe = gr.DataFrame(visible=False, interactive=False, wrap=True)
save_dataset_button = gr.Button("💾 Save Dataset", variant="primary", visible=False)
open_dataset_message = gr.Markdown("", visible=False)
dataset_share_button = gr.Button("Share Dataset URL")
dataset_share_textbox = gr.Textbox(visible=False, show_copy_button=True, label="Copy this URL:", interactive=False, show_label=True)
back_button = gr.Button("< Back", size="sm")
###################################
#
# Utils
#
###################################
T = TypeVar("T")
def batched(it: Iterable[T], n: int) -> Iterator[list[T]]:
it = iter(it)
while batch := list(islice(it, n)):
yield batch
def stream_reponse(msg: str, generated_texts: tuple[str] = (), max_tokens=500) -> Iterator[str]:
messages = [
{"role": "user", "content": msg}
] + [
item
for generated_text in generated_texts
for item in [
{"role": "assistant", "content": generated_text},
{"role": "user", "content": "Can you generate more ?"},
]
]
for _ in range(3):
try:
for message in client.chat_completion(
messages=messages,
max_tokens=max_tokens,
stream=True,
top_p=0.8,
seed=42,
):
yield message.choices[0].delta.content
except requests.exceptions.ConnectionError as e:
print(e + "\n\nRetrying in 1sec")
time.sleep(1)
continue
break
def gen_datasets_line_by_line(search_query: str, generated_texts: tuple[str] = ()) -> Iterator[str]:
search_query = search_query or ""
search_query = search_query[:1000] if search_query.strip() else ""
generated_text = ""
current_line = ""
for token in stream_reponse(
GENERATE_DATASET_NAMES_FOR_SEARCH_QUERY.format(search_query=search_query),
generated_texts=generated_texts,
):
current_line += token
if current_line.endswith("\n"):
yield current_line
generated_text += current_line
current_line = ""
yield current_line
generated_text += current_line
print("-----\n\n" + generated_text)
def gen_dataset_content(search_query: str, dataset_name: str, tags: str) -> Iterator[str]:
search_query = search_query or ""
search_query = search_query[:1000] if search_query.strip() else ""
generated_text = ""
for token in stream_reponse(GENERATE_DATASET_CONTENT_FOR_SEARCH_QUERY_AND_NAME_AND_TAGS.format(
search_query=search_query,
dataset_name=dataset_name,
tags=tags,
), max_tokens=1500):
generated_text += token
yield generated_text
print("-----\n\n" + generated_text)
def _write_generator_to_queue(queue: Queue, func: Callable[..., Iterable], kwargs: dict) -> None:
for i, result in enumerate(func(**kwargs)):
queue.put(result)
return None
def iflatmap_unordered(
func: Callable[..., Iterable[T]],
*,
kwargs_iterable: Iterable[dict],
) -> Iterable[T]:
queue = Queue()
with ThreadPool() as pool:
async_results = [
pool.apply_async(_write_generator_to_queue, (queue, func, kwargs)) for kwargs in kwargs_iterable
]
try:
while True:
try:
yield queue.get(timeout=0.05)
except Empty:
if all(async_result.ready() for async_result in async_results) and queue.empty():
break
finally:
# we get the result in case there's an error to raise
[async_result.get(timeout=0.05) for async_result in async_results]
def generate_partial_dataset(title: str, content: str, search_query: str, variant: str, csv_header: str, output: list[dict[str, str]], indices_to_generate: list[int], max_tokens=1500) -> Iterator[int]:
dataset_name, tags = title.strip("# ").split("\ntags:", 1)
dataset_name, tags = dataset_name.strip(), tags.strip()
messages = [
{
"role": "user",
"content": GENERATE_DATASET_CONTENT_FOR_SEARCH_QUERY_AND_NAME_AND_TAGS.format(
dataset_name=dataset_name,
tags=tags,
search_query=search_query,
)
},
{"role": "assistant", "content": title + "\n\n" + content},
{"role": "user", "content": GENERATE_MORE_ROWS.format(csv_header=csv_header) + " " + variant},
]
for _ in range(3):
generated_text = ""
generated_csv = ""
current_line = ""
nb_samples = 0
_in_csv = False
try:
for message in client.chat_completion(
messages=messages,
max_tokens=max_tokens,
stream=True,
top_p=0.8,
seed=42,
):
if nb_samples >= len(indices_to_generate):
break
current_line += message.choices[0].delta.content
generated_text += message.choices[0].delta.content
if current_line.endswith("\n"):
_in_csv = _in_csv ^ current_line.lstrip().startswith("```")
if current_line.strip() and _in_csv and not current_line.lstrip().startswith("```"):
generated_csv += current_line
try:
generated_df = parse_csv_df(generated_csv.strip(), csv_header=csv_header)
if len(generated_df) > nb_samples:
# Convert latest record to dict and refine it
record = generated_df.iloc[-1].to_dict()
refined_record = refine_data_generic([record])[0]
# Add quality flags if any
flags = detect_anomalies(refined_record)
if flags:
refined_record['_quality_flags'] = flags
output[indices_to_generate[nb_samples]] = refined_record
nb_samples += 1
yield 1
except Exception:
pass
current_line = ""
except requests.exceptions.ConnectionError as e:
print(e + "\n\nRetrying in 1sec")
time.sleep(1)
continue
break
# for debugging
# with open(f".output{indices_to_generate[0]}.txt", "w") as f:
# f.write(generated_text)
def generate_variants(preview_df: pd.DataFrame):
label_candidate_columns = [column for column in preview_df.columns if "label" in column.lower()]
if label_candidate_columns:
labels = preview_df[label_candidate_columns[0]].unique()
if len(labels) > 1:
return [
GENERATE_VARIANTS_WITH_RARITY_AND_LABEL.format(rarity=rarity, label=label)
for rarity in RARITIES
for label in labels
]
return [
GENERATE_VARIANTS_WITH_RARITY.format(rarity=rarity)
for rarity in LONG_RARITIES
]
# Knowledge base storage
class KnowledgeBase:
def __init__(self):
self.materials: Set[str] = {'Metal', 'Wood', 'Plastic', 'Aluminum', 'Bronze', 'Steel', 'Glass', 'Leather', 'Fabric'}
self.colors: Set[str] = {'Red', 'Black', 'White', 'Silver', 'Bronze', 'Yellow', 'Blue', 'Green', 'Gray', 'Brown'}
self.patterns: Dict[str, List[str]] = {}
self.source_data: Dict[str, Any] = {}
def load_source(self, source_type: str, source_path: str) -> None:
"""Load data from various sources into the knowledge base"""
try:
if source_type == 'csv_url':
response = requests.get(source_path)
df = pd.read_csv(io.StringIO(response.text))
elif source_type == 'xlsx_url':
response = requests.get(source_path)
df = pd.read_excel(io.BytesIO(response.content))
elif source_type == 'local_csv':
df = pd.read_csv(source_path)
elif source_type == 'local_xlsx':
df = pd.read_excel(source_path)
else:
raise ValueError(f"Unsupported source type: {source_type}")
# Extract patterns and common values
self._extract_knowledge(df)
# Store source data
self.source_data[source_path] = df.to_dict('records')
except Exception as e:
print(f"Error loading source {source_path}: {str(e)}")
def _extract_knowledge(self, df: pd.DataFrame) -> None:
"""Extract patterns and common values from dataframe"""
for column in df.columns:
if 'material' in column.lower():
values = df[column].dropna().unique()
self.materials.update(v.title() for v in values if isinstance(v, str))
elif 'color' in column.lower():
values = df[column].dropna().unique()
self.colors.update(v.title() for v in values if isinstance(v, str))
# Store column patterns
if df[column].dtype == 'object':
patterns = df[column].dropna().astype(str).tolist()
self.patterns[column] = patterns
def get_closest_match(self, value: str, field_type: str) -> Optional[str]:
"""Find closest match from known values"""
if field_type == 'material':
matches = get_close_matches(value.title(), list(self.materials), n=1, cutoff=0.8)
elif field_type == 'color':
matches = get_close_matches(value.title(), list(self.colors), n=1, cutoff=0.8)
else:
return None
return matches[0] if matches else None
# Initialize knowledge base
knowledge_base = KnowledgeBase()
def refine_data_generic(dataset: List[Dict[str, Any]], mode: str = 'sourceless', kb: Optional[KnowledgeBase] = None) -> List[Dict[str, Any]]:
"""
Enhanced universal dataset refinement with source-aware and sourceless modes.
Args:
dataset: List of dictionary records
mode: 'sourceless' or 'sourced'
knowledge_base: Optional reference data for sourced mode
"""
def split_compound_field(field: str) -> List[str]:
"""Split compound fields like materialwear into separate values"""
parts = re.split(r'[,;\n]+', field)
parts = [part.strip().title() for part in parts if part.strip()]
return list(set(parts)) # Remove duplicates
def normalize_value(value: Any, field_name: str) -> Any:
"""Smart value normalization with field context"""
if not isinstance(value, str):
return value
# Basic cleanup
value = re.sub(r'\s+', ' ', value.strip())
value = value.replace('_', ' ')
# Field-specific processing with knowledge base
if any(term in field_name.lower() for term in ['material']):
parts = split_compound_field(value)
if mode == 'sourced' and kb:
known = [kb.get_closest_match(p, 'material') or p.title() for p in parts]
else:
known = [m for m in parts if m in kb.materials] if kb else parts
if known:
return known[0] if len(known) == 1 else known
return value.title()
if any(term in field_name.lower() for term in ['color']):
parts = split_compound_field(value)
if mode == 'sourced' and kb:
known = [kb.get_closest_match(p, 'color') or p.title() for p in parts]
else:
known = [c for c in parts if c in kb.colors] if kb else parts
if known:
return known[0] if len(known) == 1 else known
return value.title()
if any(term in field_name.lower() for term in ['date', 'time']):
# Add date normalization logic here
return value
# Default titlecase for descriptive fields
if any(term in field_name.lower() for term in ['type', 'status', 'category', 'description']):
return value.title()
return value
def clean_record(record: Dict[str, Any]) -> Dict[str, Any]:
"""Enhanced record cleaning with compound field detection"""
cleaned = {}
compound_fields = {}
# First pass: Basic cleaning and compound field detection
for key, value in record.items():
clean_key = key.strip().lower().replace(" ", "_")
# Handle compound fields (e.g., materialwear)
if isinstance(value, str):
for material in COMMON_MATERIALS:
if material.lower() in value.lower():
compound_fields[clean_key] = value
break
if isinstance(value, list):
cleaned[clean_key] = [normalize_value(v, clean_key) for v in value]
elif isinstance(value, dict):
cleaned[clean_key] = clean_record(value)
else:
cleaned[clean_key] = normalize_value(value, clean_key)
# Second pass: Split compound fields
for key, value in compound_fields.items():
parts = split_compound_field(value)
materials = [p for p in parts if p in COMMON_MATERIALS]
if materials:
cleaned['material'] = materials[0] if len(materials) == 1 else materials
# Store remaining info in wear/condition field
remaining = [p for p in parts if p not in materials]
if remaining:
cleaned['condition'] = ' '.join(remaining)
return cleaned
# Use knowledge base patterns in sourced mode
if mode == 'sourced' and kb and kb.patterns:
for record in dataset:
for field, patterns in kb.patterns.items():
if field in record:
value = str(record[field])
matches = get_close_matches(value, patterns, n=1, cutoff=0.8)
if matches:
record[field] = matches[0]
return [clean_record(entry) for entry in dataset]
def refine_preview_data(df: pd.DataFrame, mode: str = 'sourceless') -> pd.DataFrame:
"""Refine preview data with the selected mode"""
# Remove dummy "id" columns first
for column_name, values in df.to_dict(orient="series").items():
try:
if [int(v) for v in values] == list(range(len(df))):
df = df.drop(columns=column_name)
if [int(v) for v in values] == list(range(1, len(df) + 1)):
df = df.drop(columns=column_name)
except Exception:
pass
# Convert to records for refinement
records = df.to_dict('records')
# Apply refinement with current mode and knowledge base
refined_records = refine_data_generic(records, mode=mode, kb=knowledge_base)
# Convert back to DataFrame
refined_df = pd.DataFrame(refined_records)
return refined_df
def detect_anomalies(record: Dict[str, Any]) -> List[str]:
"""
Detect potential anomalies in a record.
Returns a list of flags for any detected issues.
"""
flags = []
for k, v in record.items():
if isinstance(v, str) and len(v) > 300:
flags.append(f"{k} looks too verbose.")
if isinstance(v, str) and v.lower() in ['n/a', 'none', 'undefined']:
flags.append(f"{k} is missing or undefined.")
return flags
def parse_preview_df(content: str) -> tuple[str, pd.DataFrame]:
_in_csv = False
csv = "\n".join(
line for line in content.split("\n") if line.strip()
and (_in_csv := (_in_csv ^ line.lstrip().startswith("```")))
and not line.lstrip().startswith("```")
)
if not csv:
raise gr.Error("Failed to parse CSV Preview")
# Get header and parse initial DataFrame
csv_header = csv.split("\n")[0]
df = parse_csv_df(csv)
# Convert DataFrame to list of dicts for refinement
records = df.to_dict('records')
# Apply refinement
refined_records = refine_data_generic(records)
# Add quality flags
for record in refined_records:
flags = detect_anomalies(record)
if flags:
record['_quality_flags'] = flags
# Convert back to DataFrame
refined_df = pd.DataFrame(refined_records)
return csv_header, refined_df
def parse_csv_df(csv: str, csv_header: Optional[str] = None) -> pd.DataFrame:
# Fix generation mistake when providing a list that is not in quotes
for match in re.finditer(r'''(?!")\[(["'][\w ]+["'][, ]*)+\](?!")''', csv):
span = match.string[match.start() : match.end()]
csv = csv.replace(span, '"' + span.replace('"', "'") + '"', 1)
# Add header if missing
if csv_header and csv.strip().split("\n")[0] != csv_header:
csv = csv_header + "\n" + csv
# Read CSV
df = pd.read_csv(io.StringIO(csv), skipinitialspace=True)
return df
###################################
#
# Buttons
#
###################################
def _search_datasets(search_query):
yield {generated_texts_state: []}
yield {
button_group: gr.Group(elem_classes="buttonsGroup insivibleButtonGroup")
for button_group in button_groups[MAX_NB_ITEMS_PER_GENERATION_CALL:]
}
yield {
k: v
for dataset_name_button, tags_button in batched(buttons, 2)
for k, v in {
dataset_name_button: gr.Button("⬜⬜⬜⬜⬜⬜", elem_classes="topButton linear-background"),
tags_button: gr.Button("░░░░, ░░░░, ░░░░", elem_classes="bottomButton linear-background")
}.items()
}
current_item_idx = 0
generated_text = ""
for line in gen_datasets_line_by_line(search_query):
if "I'm sorry" in line or "against Microsoft's use case policy" in line:
raise gr.Error("Error: inappropriate content")
if current_item_idx >= MAX_NB_ITEMS_PER_GENERATION_CALL:
return
if line.strip() and line.strip().split(".", 1)[0].isnumeric():
try:
dataset_name, tags = line.strip().split(".", 1)[1].strip(" )").split(" (", 1)
except ValueError:
dataset_name, tags = line.strip().split(".", 1)[1].strip(" )").split(" ", 1)
dataset_name, tags = dataset_name.strip("()[]* "), tags.strip("()[]* ")
generated_text += line
yield {
buttons[2 * current_item_idx]: gr.Button(dataset_name, elem_classes="topButton"),
buttons[2 * current_item_idx + 1]: gr.Button(tags, elem_classes="bottomButton"),
generated_texts_state: (generated_text,),
}
current_item_idx += 1
@search_button.click(inputs=search_bar, outputs=button_groups + buttons + [generated_texts_state])
def search_dataset_from_search_button(search_query):
yield from _search_datasets(search_query)
@search_bar.submit(inputs=search_bar, outputs=button_groups + buttons + [generated_texts_state])
def search_dataset_from_search_bar(search_query):
yield from _search_datasets(search_query)
@load_more_datasets.click(inputs=[search_bar, generated_texts_state], outputs=button_groups + buttons + [generated_texts_state])
def search_more_datasets(search_query, generated_texts):
current_item_idx = initial_item_idx = len(generated_texts) * MAX_NB_ITEMS_PER_GENERATION_CALL
yield {
button_group: gr.Group(elem_classes="buttonsGroup")
for button_group in button_groups[len(generated_texts) * MAX_NB_ITEMS_PER_GENERATION_CALL:(len(generated_texts) + 1) * MAX_NB_ITEMS_PER_GENERATION_CALL]
}
generated_text = ""
for line in gen_datasets_line_by_line(search_query, generated_texts=generated_texts):
if "I'm sorry" in line or "against Microsoft's use case policy" in line:
raise gr.Error("Error: inappropriate content")
if current_item_idx - initial_item_idx >= MAX_NB_ITEMS_PER_GENERATION_CALL:
return
if line.strip() and line.strip().split(".", 1)[0].isnumeric():
try:
dataset_name, tags = line.strip().split(".", 1)[1].strip(" )").split(" (", 1)
except ValueError:
dataset_name, tags = line.strip().split(".", 1)[1].strip(" )").split(" ", 1) [0], ""
dataset_name, tags = dataset_name.strip("()[]* "), tags.strip("()[]* ")
generated_text += line
yield {
buttons[2 * current_item_idx]: gr.Button(dataset_name, elem_classes="topButton"),
buttons[2 * current_item_idx + 1]: gr.Button(tags, elem_classes="bottomButton"),
generated_texts_state: (*generated_texts, generated_text),
}
current_item_idx += 1
def _show_dataset(search_query, dataset_name, tags):
yield {
search_page: gr.Column(visible=False),
dataset_page: gr.Column(visible=True),
dataset_title: f"# {dataset_name}\n\n tags: {tags}",
dataset_share_textbox: gr.Textbox(visible=False),
dataset_dataframe: gr.DataFrame(visible=False),
generate_full_dataset_button: gr.Button(interactive=True),
save_dataset_button: gr.Button(visible=False),
open_dataset_message: gr.Markdown(visible=False)
}
for generated_text in gen_dataset_content(search_query=search_query, dataset_name=dataset_name, tags=tags):
yield {dataset_content: generated_text}
show_dataset_inputs = [search_bar, *buttons]
show_dataset_outputs = [search_page, dataset_page, dataset_title, dataset_content, generate_full_dataset_button, dataset_dataframe, save_dataset_button, open_dataset_message, dataset_share_textbox]
scroll_to_top_js = """
function (...args) {
console.log(args);
if ('parentIFrame' in window) {
window.parentIFrame.scrollTo({top: 0, behavior:'smooth'});
} else {
window.scrollTo({ top: 0 });
}
return args;
}
"""
def show_dataset_from_button(search_query, *buttons_values, i):
dataset_name, tags = buttons_values[2 * i : 2 * i + 2]
yield from _show_dataset(search_query, dataset_name, tags)
for i, (dataset_name_button, tags_button) in enumerate(batched(buttons, 2)):
dataset_name_button.click(partial(show_dataset_from_button, i=i), inputs=show_dataset_inputs, outputs=show_dataset_outputs, js=scroll_to_top_js)
tags_button.click(partial(show_dataset_from_button, i=i), inputs=show_dataset_inputs, outputs=show_dataset_outputs, js=scroll_to_top_js)
@back_button.click(outputs=[search_page, dataset_page], js=scroll_to_top_js)
def show_search_page():
return gr.Column(visible=True), gr.Column(visible=False)
@generate_full_dataset_button.click(
inputs=[dataset_title, dataset_content, search_bar, select_namespace_dropdown, visibility_radio, refinement_mode],
outputs=[dataset_dataframe, generate_full_dataset_button, save_dataset_button]
)
def generate_full_dataset(title, content, search_query, namespace, visibility, mode):
dataset_name, tags = title.strip("# ").split("\ntags:", 1)
dataset_name, tags = dataset_name.strip(), tags.strip()
csv_header, preview_df = parse_preview_df(content)
# Clean and refine the preview data
preview_df = refine_preview_data(preview_df, mode)
columns = list(preview_df)
output: list[Optional[dict]] = [None] * NUM_ROWS
output[:len(preview_df)] = [{"idx": i, **x} for i, x in enumerate(preview_df.to_dict(orient="records"))]
yield {
dataset_dataframe: gr.DataFrame(pd.DataFrame([{"idx": i, **x} for i, x in enumerate(output) if x]), visible=True),
generate_full_dataset_button: gr.Button(interactive=False),
save_dataset_button: gr.Button(f"💾 Save Dataset {namespace}/{dataset_name}" + (" (private)" if visability != "public" else ""), visible=True, interactive=False)
}
kwargs_iterable = [
{
"title": title,
"content": content,
"search_query": search_query,
"variant": variant,
"csv_header": csv_header,
"output": output,
"indices_to_generate": list(range(len(preview_df) + i, NUM_ROWS, NUM_VARIANTS)),
}
for i, variant in enumerate(islice(generate_variants(preview_df), NUM_VARIANTS))
]
for _ in iflatmap_unordered(generate_partial_dataset, kwargs_iterable=kwargs_iterable):
yield {dataset_dataframe: pd.DataFrame([{"idx": i, **{column_name: x.get(column_name) for column_name in columns}} for i, x in enumerate(output) if x])}
yield {save_dataset_button: gr.Button(interactive=True)}
print(f"Generated {dataset_name}!")
@save_dataset_button.click(inputs=[dataset_title, dataset_content, search_bar, dataset_dataframe, select_namespace_dropdown, visibility_radio], outputs=[save_dataset_button, open_dataset_message])
def save_dataset(title: str, content: str, search_query: str, df: pd.DataFrame, namespace: str, visability: str, oauth_token: Optional[gr.OAuthToken]):
dataset_name, tags = title.strip("# ").split("\ntags:", 1)
dataset_name, tags = dataset_name.strip(), tags.strip()
token = oauth_token.token if oauth_token else save_dataset_hf_token
repo_id = f"{namespace}/{dataset_name}"
dataset_url = f"{URL}?q={search_query.replace(' ', '+')}&dataset={dataset_name.replace(' ', '+')}&tags={tags.replace(' ', '+')}"
gr.Info("Saving dataset...")
yield {save_dataset_button: gr.Button(interactive=False)}
create_repo(repo_id=repo_id, repo_type="dataset", private=visability!="public", exist_ok=True, token=token)
df.to_csv(f"hf://datasets/{repo_id}/data.csv", storage_options={"token": token}, index=False)
DatasetCard(DATASET_CARD_CONTENT.format(title=title, content=content, url=URL, dataset_url=dataset_url, model_id=model_id, search_query=search_query)).push_to_hub(repo_id=repo_id, repo_type="dataset", token=token)
gr.Info(f"✅ Dataset saved at {repo_id}")
additional_message = "PS: You can also save datasets under your account in the Settings ;)"
yield {open_dataset_message: gr.Markdown(f"# 🎉 Yay ! Your dataset has been saved to [{repo_id}](https://huggingface.co/datasets/{repo_id}) !\n\nDataset link: [https://huggingface.co/datasets/{repo_id}](https://huggingface.co/datasets/{repo_id})\n\n{additional_message}", visible=True)}
print(f"Saved {dataset_name}!")
@dataset_share_button.click(inputs=[dataset_title, search_bar], outputs=[dataset_share_textbox])
def show_dataset_url(title, search_query):
dataset_name, tags = title.strip("# ").split("\ntags:", 1)
dataset_name, tags = dataset_name.strip(), tags.strip()
return gr.Textbox(
f"{URL}?q={search_query.replace(' ', '+')}&dataset={dataset_name.replace(' ', '+')}&tags={tags.replace(' ', '+')}",
visible=True,
)
@refinement_mode.change(outputs=[source_group])
def toggle_source_group(mode):
return gr.Group(visible=(mode == "sourced"))
@load_source_button.click(inputs=[source_type, source_path], outputs=[source_status])
def load_knowledge_source(source_type, source_path):
try:
knowledge_base.load_source(source_type, source_path)
return gr.Markdown("✅ Source loaded successfully", visible=True)
except Exception as e:
return gr.Markdown(f"❌ Error loading source: {str(e)}", visible=True)
@demo.load(outputs=show_dataset_outputs + button_groups + buttons + [generated_texts_state] + [select_namespace_dropdown, visibility_radio, source_group])
def load_app(request: gr.Request, oauth_token: Optional[gr.OAuthToken]):
if oauth_token:
user_info = whoami(oauth_token.token)
yield {
select_namespace_dropdown: gr.Dropdown(
choices=[user_info["name"]] + [org_info["name"] for org_info in user_info["orgs"]],
value=user_info["name"],
visible=True,
),
visibility_radio: gr.Radio(interactive=True),
}
query_params = dict(request.query_params)
if "dataset" in query_params:
yield from _show_dataset(
search_query=query_params.get("q", query_params["dataset"]),
dataset_name=query_params["dataset"],
tags=query_params.get("tags", "")
)
elif "q" in query_params:
yield {search_bar: query_params["q"]}
yield from _search_datasets(query_params["q"])
else:
yield {search_page: gr.Column(visible=True)}
demo.launch(ssr_mode=False)()
|