Spaces:
Runtime error
Runtime error
File size: 4,559 Bytes
14415d3 3010e69 14415d3 3010e69 14415d3 3010e69 14415d3 3010e69 cef0a6e 14415d3 3010e69 cef0a6e 14415d3 3010e69 cef0a6e 14415d3 3010e69 14415d3 3010e69 ac15cea 3010e69 ac15cea 3010e69 ac15cea 14415d3 3010e69 14415d3 0f971cd 14415d3 3010e69 14415d3 3010e69 1d0c268 d249eac 14415d3 0f971cd 1c2e9be 3010e69 14415d3 1d0c268 14415d3 ac15cea 14415d3 3010e69 ac15cea 3010e69 1d4d8a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
import streamlit as st
from huggingface_hub import InferenceClient
import os
import sys
import pickle
st.title("CODEFUSSION ☄")
base_url = "https://api-inference.huggingface.co/models/"
API_KEY = os.environ.get('HUGGINGFACE_API_KEY')
model_links = {
"LegacyLift🚀": base_url + "mistralai/Mistral-7B-Instruct-v0.2",
"ModernMigrate⭐": base_url + "mistralai/Mixtral-8x7B-Instruct-v0.1",
"RetroRecode🔄": base_url + "microsoft/Phi-3-mini-4k-instruct"
}
model_info = {
"LegacyLift🚀": {
'description': """The LegacyLift model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \n\nThis model is best for minimal problem-solving, content writing, and daily tips.\n""",
'logo': './11.jpg'
},
"ModernMigrate⭐": {
'description': """The ModernMigrate model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \n\nThis model excels in coding, logical reasoning, and high-speed inference. \n""",
'logo': './2.jpg'
},
"RetroRecode🔄": {
'description': """The RetroRecode model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \n\nThis model is best suited for critical development, practical knowledge, and serverless inference.\n""",
'logo': './3.jpg'
},
}
def format_promt(message, conversation_history, custom_instructions=None):
prompt = ""
if custom_instructions:
prompt += f"\[INST\] {custom_instructions} \[/INST\]"
# Add conversation history to the prompt
prompt += "\[CONV_HISTORY\]\n"
for role, content in conversation_history:
prompt += f"{role.upper()}: {content}\n"
prompt += "\[/CONV_HISTORY\]"
# Add the current message
prompt += f"\[INST\] {message} \[/INST\]"
return prompt
def reset_conversation():
'''
Resets Conversation
'''
st.session_state.conversation = []
st.session_state.messages = []
st.experimental_rerun() # Add this line to rerun the app after reset
models = [key for key in model_links.keys()]
selected_model = st.sidebar.selectbox("Select Model", models)
temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, (0.5))
st.sidebar.button('Reset Chat', on_click=reset_conversation) # Reset button
st.sidebar.write(f"You're now chatting with **{selected_model}**")
st.sidebar.markdown(model_info[selected_model]['description'])
st.sidebar.image(model_info[selected_model]['logo'])
st.sidebar.markdown("\*Generating the code might go slow if you are using low power resources \*")
if "prev_option" not in st.session_state:
st.session_state.prev_option = selected_model
if st.session_state.prev_option != selected_model:
st.session_state.messages = []
st.session_state.prev_option = selected_model
# Load the conversation history from the file
if "messages" not in st.session_state:
st.session_state.messages = load_conversation_history()
repo_id = model_links[selected_model]
st.subheader(f'{selected_model}')
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
if prompt := st.chat_input(f"Hi I'm {selected_model}, How can I help you today?"):
custom_instruction = "Act like a Human in conversation"
with st.chat_message("user"):
st.markdown(prompt)
st.session_state.messages.append({"role": "user", "content": prompt})
conversation_history = [(message["role"], message["content"]) for message in st.session_state.messages]
formated_text = format_promt(prompt, conversation_history, custom_instruction)
with st.chat_message("assistant"):
client = InferenceClient(
model=model_links[selected_model], )
max_new_tokens = 2048 # Adjust this value as needed
try:
output = client.text_generation(
formated_text,
temperature=temp_values,
max_new_tokens=max_new_tokens,
stream=True
)
response = st.write_stream(output)
except ValueError as e:
if "Input validation error" in str(e):
st.error("Error: The input prompt is too long. Please try a shorter prompt.")
else:
st.error(f"An error occurred: {e}")
else:
st.session_state.messages.append({"role": "assistant", "content": response})
save_conversation_history(st.session_state.messages) |