File size: 10,337 Bytes
e96849b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8ebd13
 
 
e96849b
 
 
d8ebd13
e96849b
d8ebd13
e96849b
d8ebd13
e96849b
 
 
 
 
 
d8ebd13
e96849b
 
 
 
 
 
 
 
 
 
 
 
 
 
d8ebd13
e96849b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8ebd13
e96849b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52165bc
 
 
 
 
e96849b
 
 
 
 
 
 
 
 
 
 
 
52165bc
 
 
 
 
 
 
 
 
bfb6cb8
52165bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e96849b
 
 
d8ebd13
e96849b
 
 
 
d8ebd13
e96849b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8ebd13
e96849b
 
 
d8ebd13
e96849b
 
 
d8ebd13
e96849b
 
 
d8ebd13
e96849b
 
 
d8ebd13
e96849b
 
 
d8ebd13
e96849b
 
 
 
 
d8ebd13
e96849b
 
 
d8ebd13
e96849b
 
 
d8ebd13
e96849b
 
 
d8ebd13
e96849b
 
 
 
d8ebd13
e96849b
 
 
d8ebd13
e96849b
 
 
d8ebd13
e96849b
 
 
d8ebd13
e96849b
 
 
 
 
d8ebd13
e96849b
 
 
d8ebd13
e96849b
 
 
d8ebd13
e96849b
 
 
d8ebd13
e96849b
 
 
 
 
d8ebd13
bfb6cb8
d8ebd13
e96849b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import os
import json
import logging
from typing import List, Dict, Tuple, Optional, Any
from dataclasses import dataclass
from abc import ABC, abstractmethod
from huggingface_hub import HfApi, InferenceApi
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline

@dataclass
class ProjectConfig:
    name: str
    description: str
    technologies: List[str]
    structure: Dict[str, List[str]]

class WebDevelopmentTool(ABC):
    def __init__(self, name: str, description: str):
        self.name = name
        self.description = description

    @abstractmethod
    def generate_code(self, *args, **kwargs):
        pass

class HTMLGenerator(WebDevelopmentTool):
    def __init__(self):
        super().__init__("HTML Generator", "Generates HTML code for web pages")

    def generate_code(self, structure: Dict[str, Any]) -> str:
        html = "<html><body>"
        for tag, content in structure.items():
            html += f"<{tag}>{content}</{tag}>"
        html += "</body></html>"
        return html

class CSSGenerator(WebDevelopmentTool):
    def __init__(self):
        super().__init__("CSS Generator", "Generates CSS code for styling web pages")

    def generate_code(self, styles: Dict[str, Dict[str, str]]) -> str:
        css = ""
        for selector, properties in styles.items():
            css += f"{selector} {{\n"
            for prop, value in properties.items():
                css += f"  {prop}: {value};\n"
            css += "}\n"
        return css

class JavaScriptGenerator(WebDevelopmentTool):
    def __init__(self):
        super().__init__("JavaScript Generator", "Generates JavaScript code for web functionality")

    def generate_code(self, functions: List[Dict[str, Any]]) -> str:
        js = ""
        for func in functions:
            js += f"function {func['name']}({', '.join(func['params'])}) {{\n"
            js += f"  {func['body']}\n"
            js += "}\n\n"
        return js

class EnhancedAIAgent:
    def __init__(self, name: str, description: str, skills: List[str], model_name: str):
        self.name = name
        self.description = description
        self.skills = skills
        self.model_name = model_name
        self.html_gen_tool = HTMLGenerator()
        self.css_gen_tool = CSSGenerator()
        self.js_gen_tool = JavaScriptGenerator()
        self.hf_api = HfApi()
        self.inference_api = InferenceApi(repo_id=model_name, token=os.environ.get("HF_API_TOKEN"))
        self.tokenizer = AutoTokenizer.from_pretrained(model_name)
        self.model = AutoModelForCausalLM.from_pretrained(model_name)
        self.text_generation = pipeline("text-generation", model=self.model, tokenizer=self.tokenizer)
        self.logger = logging.getLogger(__name__)

    def generate_agent_response(self, prompt: str) -> str:
        try:
            response = self.inference_api(prompt)
            return response[0]['generated_text']
        except Exception as e:
            self.logger.error(f"Error generating response: {str(e)}")
            return f"Error: Unable to generate response. {str(e)}"

    def create_project_structure(self, project_config: ProjectConfig) -> Dict[str, str]:
        project_files = {}
        for directory, files in project_config.structure.items():
            for file in files:
                file_path = os.path.join(directory, file)
                if file.endswith('.html'):
                    content = self.html_gen_tool.generate_code({"body": f"<h1>{project_config.name}</h1>"})
                elif file.endswith('.css'):
                    content = self.css_gen_tool.generate_code({"body": {"font-family": "Arial, sans-serif"}})
                elif file.endswith('.js'):
                    content = self.js_gen_tool.generate_code([{"name": "init", "params": [], "body": "console.log('Initialized');"}])
                else:
                    content = f"// TODO: Implement {file}"
                project_files[file_path] = content
        return project_files

    import json
from json.decoder import JSONDecodeError

def generate_project_config(self, project_description: str) -> Optional[ProjectConfig]:
    prompt = f"""
Based on the following project description, generate a ProjectConfig object:

Description: {project_description}

The ProjectConfig should include:
- name: A short, descriptive name for the project
- description: A brief summary of the project
- technologies: A list of technologies to be used (e.g., ["HTML", "CSS", "JavaScript", "React"])
- structure: A dictionary representing the file structure, where keys are directories and values are lists of files

Respond with a JSON object representing the ProjectConfig.
"""
    response = self.generate_agent_response(prompt)

    try:
        # Try to find and extract a JSON object from the response
        json_start = response.find('{')
        json_end = response.rfind('}') + 1
        if json_start != -1 and json_end != -1:
            json_str = response[json_start:json_end]
            config_dict = json.loads(json_str)
            return ProjectConfig(**config_dict)
        else:
            raise ValueError("No JSON object found in the response")
    except (JSONDecodeError, ValueError) as e:
        self.logger.error(f"Error parsing JSON from response: {str(e)}")
        self.logger.error(f"Full response from model: {response}")
        
        # Attempt to salvage partial information
        try:
            partial_config = self.extract_partial_config(response)
            if partial_config:
                self.logger.warning("Extracted partial config from malformed response")
                return partial_config
        except Exception as ex:
            self.logger.error(f"Failed to extract partial config: {str(ex)}")
        
        return None

def extract_partial_config(self, response: str) -> Optional[ProjectConfig]:
    """Attempt to extract partial configuration from a malformed response."""
    name = self.extract_field(response, "name")
    description = self.extract_field(response, "description")
    technologies = self.extract_list(response, "technologies")
    structure = self.extract_dict(response, "structure")
    
    if name and description:
        return ProjectConfig(
            name=name,
            description=description,
            technologies=technologies or [],
            structure=structure or {}
        )
    return None

def extract_field(self, text: str, field: str) -> Optional[str]:
    """Extract a simple field value from text."""
    match = re.search(rf'"{field}"\s*:\s*"([^"]*)"', text)
    return match.group(1) if match else None

def extract_list(self, text: str, field: str) -> Optional[List[str]]:
    """Extract a list from text."""
    match = re.search(rf'"{field}"\s*:\s*\[(.*?)\]', text, re.DOTALL)
    if match:
        items = re.findall(r'"([^"]*)"', match.group(1))
        return items
    return None

def extract_dict(self, text: str, field: str) -> Optional[Dict[str, List[str]]]:
    """Extract a dictionary from text."""
    match = re.search(rf'"{field}"\s*:\s*\{{(.*?)\}}', text, re.DOTALL)
    if match:
        dict_str = match.group(1)
        result = {}
        for item in re.finditer(r'"([^"]*)"\s*:\s*\[(.*?)\]', dict_str, re.DOTALL):
            key = item.group(1)
            values = re.findall(r'"([^"]*)"', item.group(2))
            result[key] = values
        return result
    return None
    
    def implement_feature(self, feature_description: str, existing_code: Optional[str] = None) -> str:
        prompt = f"""
Feature to implement: {feature_description}

Existing code:
```
{existing_code if existing_code else 'No existing code provided.'}
```

Please implement the described feature, modifying the existing code if provided.
Respond with only the code, no explanations.
"""
        return self.generate_agent_response(prompt)

    def review_code(self, code: str) -> str:
        prompt = f"""
Please review the following code and provide feedback:

```
{code}
```

Consider the following aspects in your review:
1. Code quality and readability
2. Potential bugs or errors
3. Adherence to best practices
4. Suggestions for improvement
Provide your feedback in a structured format.
"""
        return self.generate_agent_response(prompt)

    def optimize_code(self, code: str, optimization_goal: str) -> str:
        prompt = f"""
Please optimize the following code with the goal of improving {optimization_goal}:

```
{code}
```

Provide only the optimized code in your response, no explanations.
"""
        return self.generate_agent_response(prompt)

    def generate_documentation(self, code: str) -> str:
        prompt = f"""
Please generate comprehensive documentation for the following code:

```
{code}
```

Include the following in your documentation:
1. Overview of the code's purpose
2. Description of functions/classes and their parameters
3. Usage examples
4. Any important notes or considerations

Provide the documentation in Markdown format.
"""
        return self.generate_agent_response(prompt)

    def suggest_tests(self, code: str) -> str:
        prompt = f"""
Please suggest unit tests for the following code:

```
{code}
```

For each function or class, provide:
1. Test case description
2. Input values
3. Expected output or behavior

Provide the suggestions in a structured format.
"""
        return self.generate_agent_response(prompt)

    def explain_code(self, code: str) -> str:
        prompt = f"""
Please provide a detailed explanation of the following code:

```
{code}
```

Include in your explanation:
1. Overall purpose of the code
2. Breakdown of each significant part
3. How different components interact
4. Any notable algorithms or design patterns used

Explain in a way that would be understandable to a junior developer.
"""
        return self.generate_agent_response(prompt)

    def suggest_refactoring(self, code: str) -> str:
        prompt = f"""
Please suggest refactoring improvements for the following code:

```
{code}
```

Consider the following in your suggestions:
1. Improving code readability
2. Enhancing maintainability
3. Applying design patterns where appropriate
4. Optimizing performance (if applicable)

Provide specific suggestions and code examples.
"""
        return self.generate_agent_response(prompt)