acecalisto3 commited on
Commit
10cd2b0
·
verified ·
1 Parent(s): 5edaad8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +157 -51
app.py CHANGED
@@ -2,6 +2,25 @@ import streamlit as st
2
  from huggingface_hub import InferenceClient
3
  import os
4
  import pickle
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
  st.title("CODEFUSSION ☄")
7
 
@@ -13,18 +32,19 @@ class Agent:
13
  self.tools = tools
14
  self.knowledge_base = knowledge_base
15
  self.memory = []
 
 
 
 
 
 
 
16
 
17
  def act(self, prompt, context):
18
  self.memory.append((prompt, context))
19
- action = self.choose_action(prompt, context)
20
  return action
21
 
22
- def choose_action(self, prompt, context):
23
- # Placeholder for action selection logic
24
- # This should be implemented based on the specific agent's capabilities
25
- # and the available tools
26
- return {"tool": "Code Generation", "arguments": {"language": "python", "code": "print('Hello, World!')"}}
27
-
28
  def observe(self, observation):
29
  # Placeholder for observation processing
30
  # This should be implemented based on the agent's capabilities and the nature of the observation
@@ -54,117 +74,206 @@ class Tool:
54
  class CodeGenerationTool(Tool):
55
  def __init__(self):
56
  super().__init__("Code Generation", "Generates code snippets in various languages.")
 
 
 
 
 
 
57
 
58
  def run(self, arguments):
59
- # This is a simplified example, real implementation would use a code generation model
60
  language = arguments.get("language", "python")
61
- code = arguments.get("code", "print('Hello, World!')")
62
- return {"output": f"""{language}{code}"""}
 
63
 
64
  class DataRetrievalTool(Tool):
65
  def __init__(self):
66
  super().__init__("Data Retrieval", "Accesses data from APIs, databases, or files.")
 
 
 
 
 
 
67
 
68
  def run(self, arguments):
69
- # This is a simplified example, real implementation would use APIs, databases, or file systems
70
- source = arguments.get("source", "https://example.com/data")
71
- return {"output": f"Data from {source}"}
 
72
 
73
  class TextGenerationTool(Tool):
74
  def __init__(self):
75
  super().__init__("Text Generation", "Generates human-like text based on a given prompt.")
 
 
 
 
 
 
76
 
77
  def run(self, arguments):
78
- # This is a simplified example, real implementation would use a text generation model
79
- prompt = arguments.get("prompt", "Write a short story about a cat.")
80
- return {"output": f"Generated text: {prompt}"}
81
 
82
  class CodeExecutionTool(Tool):
83
  def __init__(self):
84
  super().__init__("Code Execution", "Runs code snippets in various languages.")
85
 
86
  def run(self, arguments):
87
- # This is a simplified example, real implementation would use a code execution engine
88
  code = arguments.get("code", "print('Hello, World!')")
89
- return {"output": f"Code executed: {code}"}
 
 
 
 
90
 
91
  class CodeDebuggingTool(Tool):
92
  def __init__(self):
93
  super().__init__("Code Debugging", "Identifies and resolves errors in code snippets.")
 
 
 
 
 
 
94
 
95
  def run(self, arguments):
96
- # This is a simplified example, real implementation would use a code debugger
97
  code = arguments.get("code", "print('Hello, World!')")
98
- return {"output": f"Code debugged: {code}"}
 
 
 
 
 
 
99
 
100
  class CodeSummarizationTool(Tool):
101
  def __init__(self):
102
  super().__init__("Code Summarization", "Provides a concise overview of the functionality of a code snippet.")
 
 
 
 
 
 
103
 
104
  def run(self, arguments):
105
- # This is a simplified example, real implementation would use a code summarization model
106
  code = arguments.get("code", "print('Hello, World!')")
107
- return {"output": f"Code summary: {code}"}
 
108
 
109
  class CodeTranslationTool(Tool):
110
  def __init__(self):
111
  super().__init__("Code Translation", "Translates code snippets between different programming languages.")
 
 
 
 
 
 
112
 
113
  def run(self, arguments):
114
- # This is a simplified example, real implementation would use a code translation model
115
  code = arguments.get("code", "print('Hello, World!')")
116
- return {"output": f"Translated code: {code}"}
 
 
117
 
118
  class CodeOptimizationTool(Tool):
119
  def __init__(self):
120
  super().__init__("Code Optimization", "Optimizes code for performance and efficiency.")
 
 
 
 
 
 
121
 
122
  def run(self, arguments):
123
- # This is a simplified example, real implementation would use a code optimization model
124
  code = arguments.get("code", "print('Hello, World!')")
125
- return {"output": f"Optimized code: {code}"}
 
126
 
127
  class CodeDocumentationTool(Tool):
128
  def __init__(self):
129
  super().__init__("Code Documentation", "Generates documentation for code snippets.")
 
 
 
 
 
 
130
 
131
  def run(self, arguments):
132
- # This is a simplified example, real implementation would use a code documentation generator
133
  code = arguments.get("code", "print('Hello, World!')")
134
- return {"output": f"Code documentation: {code}"}
 
135
 
136
  class ImageGenerationTool(Tool):
137
  def __init__(self):
138
  super().__init__("Image Generation", "Generates images based on text descriptions.")
 
 
 
 
 
 
139
 
140
  def run(self, arguments):
141
- # This is a simplified example, real implementation would use an image generation model
142
  description = arguments.get("description", "A cat sitting on a couch")
143
- return {"output": f"Generated image based on: {description}"}
 
144
 
145
  class ImageEditingTool(Tool):
146
  def __init__(self):
147
  super().__init__("Image Editing", "Modifying existing images.")
 
 
 
 
 
 
148
 
149
  def run(self, arguments):
150
- # This is a simplified example, real implementation would use an image editing library
151
- image_path = arguments.get("image_path", "path/to/image.jpg")
152
- return {"output": f"Image edited: {image_path}"}
 
153
 
154
  class ImageAnalysisTool(Tool):
155
  def __init__(self):
156
  super().__init__("Image Analysis", "Extracting information from images, such as objects, scenes, and emotions.")
 
 
 
 
 
 
157
 
158
  def run(self, arguments):
159
- # This is a simplified example, real implementation would use an image analysis model
160
- image_path = arguments.get("image_path", "path/to/image.jpg")
161
- return {"output": f"Image analysis results: {image_path}"}
 
 
 
 
 
 
 
 
 
 
 
 
162
 
163
  # --- Agent Pool ---
164
  agent_pool = {
165
- "IdeaIntake": Agent("IdeaIntake", "Idea Intake", [DataRetrievalTool(), CodeGenerationTool(), TextGenerationTool()], knowledge_base=""),
166
- "CodeBuilder": Agent("CodeBuilder", "Code Builder", [CodeGenerationTool(), CodeDebuggingTool(), CodeOptimizationTool()], knowledge_base=""),
167
- "ImageCreator": Agent("ImageCreator", "Image Creator", [ImageGenerationTool(), ImageEditingTool()], knowledge_base=""),
168
  }
169
 
170
  # --- Workflow Definitions ---
@@ -176,19 +285,13 @@ class Workflow:
176
  self.description = description
177
 
178
  def run(self, prompt, context):
179
- # Placeholder for workflow execution logic
180
- # This should be implemented based on the specific workflow's steps
181
- # and the interaction between the agents
182
  for agent in self.agents:
183
  action = agent.act(prompt, context)
184
- # Execute the tool
185
  if action.get("tool"):
186
  tool = next((t for t in agent.tools if t.name == action["tool"]), None)
187
  if tool:
188
  output = tool.run(action["arguments"])
189
- # Update context
190
  context.update(output)
191
- # Observe the output
192
  agent.observe(output)
193
  return context
194
 
@@ -441,7 +544,7 @@ st.write(f""" Description: {DevSandboxWorkflow().description}""")
441
 
442
  # --- Displaying Tool Definitions ---
443
  st.subheader("Tool Definitions")
444
- for tool_class in [CodeGenerationTool, DataRetrievalTool, CodeExecutionTool, CodeDebuggingTool, CodeSummarizationTool, CodeTranslationTool, CodeOptimizationTool, CodeDocumentationTool, ImageGenerationTool, ImageEditingTool, ImageAnalysisTool, TextGenerationTool]:
445
  tool = tool_class()
446
  st.write(f"**{tool.name}**")
447
  st.write(f" Description: {tool.description}")
@@ -449,10 +552,10 @@ for tool_class in [CodeGenerationTool, DataRetrievalTool, CodeExecutionTool, Cod
449
  # --- Displaying Example Output ---
450
  st.subheader("Example Output")
451
  code_generation_tool = CodeGenerationTool()
452
- st.write(f"""Code Generation Tool Output: {code_generation_tool.run({'language': 'python', 'code': "print('Hello, World!')"})}""")
453
 
454
  data_retrieval_tool = DataRetrievalTool()
455
- st.write(f"""Data Retrieval Tool Output: {data_retrieval_tool.run({'source': 'https://example.com/data'})}""")
456
 
457
  code_execution_tool = CodeExecutionTool()
458
  st.write(f"""Code Execution Tool Output: {code_execution_tool.run({'code': "print('Hello, World!')"})}""")
@@ -464,7 +567,7 @@ code_summarization_tool = CodeSummarizationTool()
464
  st.write(f"""Code Summarization Tool Output: {code_summarization_tool.run({'code': "print('Hello, World!')"})}""")
465
 
466
  code_translation_tool = CodeTranslationTool()
467
- st.write(f"""Code Translation Tool Output: {code_translation_tool.run({'code': "print('Hello, World!')"})}""")
468
 
469
  code_optimization_tool = CodeOptimizationTool()
470
  st.write(f"""Code Optimization Tool Output: {code_optimization_tool.run({'code': "print('Hello, World!')"})}""")
@@ -476,7 +579,10 @@ image_generation_tool = ImageGenerationTool()
476
  st.write(f"""Image Generation Tool Output: {image_generation_tool.run({'description': 'A cat sitting on a couch'})}""")
477
 
478
  image_editing_tool = ImageEditingTool()
479
- st.write(f"""Image Editing Tool Output: {image_editing_tool.run({'image_path': 'path/to/image.jpg'})}""")
480
 
481
  image_analysis_tool = ImageAnalysisTool()
482
- st.write(f"""Image Analysis Tool Output: {image_analysis_tool.run({'image_path': 'path/to/image.jpg'})}""")
 
 
 
 
2
  from huggingface_hub import InferenceClient
3
  import os
4
  import pickle
5
+ from langchain.llms import HuggingFaceHub
6
+ from langchain.chains import ConversationChain
7
+ from langchain.memory import ConversationBufferMemory
8
+ from langchain.tools import Tool
9
+ from langchain.agents import ToolAgent, AgentType
10
+ from langchain.chains import LLMChain
11
+ from langchain.prompts import PromptTemplate
12
+ from langchain.chains.question_answering import load_qa_chain
13
+ from langchain.document_loaders import TextLoader
14
+ from langchain.text_splitter import CharacterTextSplitter
15
+ from langchain.embeddings import HuggingFaceEmbeddings # Use Hugging Face Embeddings
16
+ from langchain.vectorstores import FAISS
17
+ from langchain.chains import RetrievalQA
18
+ from langchain.chains.conversational_retrieval_qa import ConversationalRetrievalQAChain
19
+ from langchain.chains.summarization import load_summarization_chain
20
+ from langchain.chains.base import Chain
21
+ from langchain.chains.llm import LLMChain
22
+ from langchain.prompts import PromptTemplate
23
+ from typing import List, Dict, Any, Optional
24
 
25
  st.title("CODEFUSSION ☄")
26
 
 
32
  self.tools = tools
33
  self.knowledge_base = knowledge_base
34
  self.memory = []
35
+ self.llm = HuggingFaceHub(repo_id="google/flan-t5-xl", model_kwargs={"temperature": 0.5}) # Use a language model for action selection
36
+ self.agent = ToolAgent(
37
+ llm=self.llm,
38
+ tools=self.tools,
39
+ agent_type=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
40
+ verbose=True
41
+ )
42
 
43
  def act(self, prompt, context):
44
  self.memory.append((prompt, context))
45
+ action = self.agent.run(prompt, context)
46
  return action
47
 
 
 
 
 
 
 
48
  def observe(self, observation):
49
  # Placeholder for observation processing
50
  # This should be implemented based on the agent's capabilities and the nature of the observation
 
74
  class CodeGenerationTool(Tool):
75
  def __init__(self):
76
  super().__init__("Code Generation", "Generates code snippets in various languages.")
77
+ self.llm = HuggingFaceHub(repo_id="google/flan-t5-xl", model_kwargs={"temperature": 0.5})
78
+ self.prompt_template = PromptTemplate(
79
+ input_variables=["language", "code_description"],
80
+ template="Generate {language} code for: {code_description}"
81
+ )
82
+ self.chain = LLMChain(llm=self.llm, prompt=self.prompt_template)
83
 
84
  def run(self, arguments):
 
85
  language = arguments.get("language", "python")
86
+ code_description = arguments.get("code_description", "print('Hello, World!')")
87
+ code = self.chain.run(language=language, code_description=code_description)
88
+ return {"output": code}
89
 
90
  class DataRetrievalTool(Tool):
91
  def __init__(self):
92
  super().__init__("Data Retrieval", "Accesses data from APIs, databases, or files.")
93
+ self.llm = HuggingFaceHub(repo_id="google/flan-t5-xl", model_kwargs={"temperature": 0.5})
94
+ self.prompt_template = PromptTemplate(
95
+ input_variables=["data_source", "data_query"],
96
+ template="Retrieve data from {data_source} based on: {data_query}"
97
+ )
98
+ self.chain = LLMChain(llm=self.llm, prompt=self.prompt_template)
99
 
100
  def run(self, arguments):
101
+ data_source = arguments.get("data_source", "https://example.com/data")
102
+ data_query = arguments.get("data_query", "some information")
103
+ data = self.chain.run(data_source=data_source, data_query=data_query)
104
+ return {"output": data}
105
 
106
  class TextGenerationTool(Tool):
107
  def __init__(self):
108
  super().__init__("Text Generation", "Generates human-like text based on a given prompt.")
109
+ self.llm = HuggingFaceHub(repo_id="google/flan-t5-xl", model_kwargs={"temperature": 0.5})
110
+ self.prompt_template = PromptTemplate(
111
+ input_variables=["text_prompt"],
112
+ template="Generate text based on: {text_prompt}"
113
+ )
114
+ self.chain = LLMChain(llm=self.llm, prompt=self.prompt_template)
115
 
116
  def run(self, arguments):
117
+ text_prompt = arguments.get("text_prompt", "Write a short story about a cat.")
118
+ text = self.chain.run(text_prompt=text_prompt)
119
+ return {"output": text}
120
 
121
  class CodeExecutionTool(Tool):
122
  def __init__(self):
123
  super().__init__("Code Execution", "Runs code snippets in various languages.")
124
 
125
  def run(self, arguments):
 
126
  code = arguments.get("code", "print('Hello, World!')")
127
+ try:
128
+ exec(code)
129
+ return {"output": f"Code executed: {code}"}
130
+ except Exception as e:
131
+ return {"output": f"Error executing code: {e}"}
132
 
133
  class CodeDebuggingTool(Tool):
134
  def __init__(self):
135
  super().__init__("Code Debugging", "Identifies and resolves errors in code snippets.")
136
+ self.llm = HuggingFaceHub(repo_id="google/flan-t5-xl", model_kwargs={"temperature": 0.5})
137
+ self.prompt_template = PromptTemplate(
138
+ input_variables=["code", "error_message"],
139
+ template="Debug the following code:\n{code}\n\nError message: {error_message}"
140
+ )
141
+ self.chain = LLMChain(llm=self.llm, prompt=self.prompt_template)
142
 
143
  def run(self, arguments):
 
144
  code = arguments.get("code", "print('Hello, World!')")
145
+ try:
146
+ exec(code)
147
+ return {"output": f"Code debugged: {code}"}
148
+ except Exception as e:
149
+ error_message = str(e)
150
+ debugged_code = self.chain.run(code=code, error_message=error_message)
151
+ return {"output": f"Debugged code:\n{debugged_code}"}
152
 
153
  class CodeSummarizationTool(Tool):
154
  def __init__(self):
155
  super().__init__("Code Summarization", "Provides a concise overview of the functionality of a code snippet.")
156
+ self.llm = HuggingFaceHub(repo_id="google/flan-t5-xl", model_kwargs={"temperature": 0.5})
157
+ self.prompt_template = PromptTemplate(
158
+ input_variables=["code"],
159
+ template="Summarize the functionality of the following code:\n{code}"
160
+ )
161
+ self.chain = LLMChain(llm=self.llm, prompt=self.prompt_template)
162
 
163
  def run(self, arguments):
 
164
  code = arguments.get("code", "print('Hello, World!')")
165
+ summary = self.chain.run(code=code)
166
+ return {"output": f"Code summary: {summary}"}
167
 
168
  class CodeTranslationTool(Tool):
169
  def __init__(self):
170
  super().__init__("Code Translation", "Translates code snippets between different programming languages.")
171
+ self.llm = HuggingFaceHub(repo_id="google/flan-t5-xl", model_kwargs={"temperature": 0.5})
172
+ self.prompt_template = PromptTemplate(
173
+ input_variables=["code", "target_language"],
174
+ template="Translate the following code to {target_language}:\n{code}"
175
+ )
176
+ self.chain = LLMChain(llm=self.llm, prompt=self.prompt_template)
177
 
178
  def run(self, arguments):
 
179
  code = arguments.get("code", "print('Hello, World!')")
180
+ target_language = arguments.get("target_language", "javascript")
181
+ translated_code = self.chain.run(code=code, target_language=target_language)
182
+ return {"output": f"Translated code:\n{translated_code}"}
183
 
184
  class CodeOptimizationTool(Tool):
185
  def __init__(self):
186
  super().__init__("Code Optimization", "Optimizes code for performance and efficiency.")
187
+ self.llm = HuggingFaceHub(repo_id="google/flan-t5-xl", model_kwargs={"temperature": 0.5})
188
+ self.prompt_template = PromptTemplate(
189
+ input_variables=["code"],
190
+ template="Optimize the following code for performance and efficiency:\n{code}"
191
+ )
192
+ self.chain = LLMChain(llm=self.llm, prompt=self.prompt_template)
193
 
194
  def run(self, arguments):
 
195
  code = arguments.get("code", "print('Hello, World!')")
196
+ optimized_code = self.chain.run(code=code)
197
+ return {"output": f"Optimized code:\n{optimized_code}"}
198
 
199
  class CodeDocumentationTool(Tool):
200
  def __init__(self):
201
  super().__init__("Code Documentation", "Generates documentation for code snippets.")
202
+ self.llm = HuggingFaceHub(repo_id="google/flan-t5-xl", model_kwargs={"temperature": 0.5})
203
+ self.prompt_template = PromptTemplate(
204
+ input_variables=["code"],
205
+ template="Generate documentation for the following code:\n{code}"
206
+ )
207
+ self.chain = LLMChain(llm=self.llm, prompt=self.prompt_template)
208
 
209
  def run(self, arguments):
 
210
  code = arguments.get("code", "print('Hello, World!')")
211
+ documentation = self.chain.run(code=code)
212
+ return {"output": f"Code documentation:\n{documentation}"}
213
 
214
  class ImageGenerationTool(Tool):
215
  def __init__(self):
216
  super().__init__("Image Generation", "Generates images based on text descriptions.")
217
+ self.llm = HuggingFaceHub(repo_id="google/flan-t5-xl", model_kwargs={"temperature": 0.5})
218
+ self.prompt_template = PromptTemplate(
219
+ input_variables=["description"],
220
+ template="Generate an image based on the description: {description}"
221
+ )
222
+ self.chain = LLMChain(llm=self.llm, prompt=self.prompt_template)
223
 
224
  def run(self, arguments):
 
225
  description = arguments.get("description", "A cat sitting on a couch")
226
+ image_url = self.chain.run(description=description)
227
+ return {"output": f"Generated image: {image_url}"}
228
 
229
  class ImageEditingTool(Tool):
230
  def __init__(self):
231
  super().__init__("Image Editing", "Modifying existing images.")
232
+ self.llm = HuggingFaceHub(repo_id="google/flan-t5-xl", model_kwargs={"temperature": 0.5})
233
+ self.prompt_template = PromptTemplate(
234
+ input_variables=["image_url", "editing_instructions"],
235
+ template="Edit the image at {image_url} according to the instructions: {editing_instructions}"
236
+ )
237
+ self.chain = LLMChain(llm=self.llm, prompt=self.prompt_template)
238
 
239
  def run(self, arguments):
240
+ image_url = arguments.get("image_url", "https://example.com/image.jpg")
241
+ editing_instructions = arguments.get("editing_instructions", "Make the cat smile")
242
+ edited_image_url = self.chain.run(image_url=image_url, editing_instructions=editing_instructions)
243
+ return {"output": f"Edited image: {edited_image_url}"}
244
 
245
  class ImageAnalysisTool(Tool):
246
  def __init__(self):
247
  super().__init__("Image Analysis", "Extracting information from images, such as objects, scenes, and emotions.")
248
+ self.llm = HuggingFaceHub(repo_id="google/flan-t5-xl", model_kwargs={"temperature": 0.5})
249
+ self.prompt_template = PromptTemplate(
250
+ input_variables=["image_url"],
251
+ template="Analyze the image at {image_url} and provide information about objects, scenes, and emotions."
252
+ )
253
+ self.chain = LLMChain(llm=self.llm, prompt=self.prompt_template)
254
 
255
  def run(self, arguments):
256
+ image_url = arguments.get("image_url", "https://example.com/image.jpg")
257
+ analysis_results = self.chain.run(image_url=image_url)
258
+ return {"output": f"Image analysis results:\n{analysis_results}"}
259
+
260
+ class QuestionAnsweringTool(Tool):
261
+ def __init__(self):
262
+ super().__init__("Question Answering", "Answers questions based on provided context.")
263
+ self.llm = HuggingFaceHub(repo_id="google/flan-t5-xl", model_kwargs={"temperature": 0.5})
264
+ self.qa_chain = load_qa_chain(self.llm) # Use a question answering chain
265
+
266
+ def run(self, arguments):
267
+ question = arguments.get("question", "What is the capital of France?")
268
+ context = arguments.get("context", "France is a country in Western Europe. Its capital is Paris.")
269
+ answer = self.qa_chain.run(question=question, context=context)
270
+ return {"output": answer}
271
 
272
  # --- Agent Pool ---
273
  agent_pool = {
274
+ "IdeaIntake": Agent("IdeaIntake", "Idea Intake", [DataRetrievalTool(), CodeGenerationTool(), TextGenerationTool(), QuestionAnsweringTool()], knowledge_base=""),
275
+ "CodeBuilder": Agent("CodeBuilder", "Code Builder", [CodeGenerationTool(), CodeDebuggingTool(), CodeOptimizationTool(), CodeExecutionTool(), CodeSummarizationTool, CodeTranslationTool, CodeDocumentationTool], knowledge_base=""),
276
+ "ImageCreator": Agent("ImageCreator", "Image Creator", [ImageGenerationTool(), ImageEditingTool(), ImageAnalysisTool], knowledge_base=""),
277
  }
278
 
279
  # --- Workflow Definitions ---
 
285
  self.description = description
286
 
287
  def run(self, prompt, context):
 
 
 
288
  for agent in self.agents:
289
  action = agent.act(prompt, context)
 
290
  if action.get("tool"):
291
  tool = next((t for t in agent.tools if t.name == action["tool"]), None)
292
  if tool:
293
  output = tool.run(action["arguments"])
 
294
  context.update(output)
 
295
  agent.observe(output)
296
  return context
297
 
 
544
 
545
  # --- Displaying Tool Definitions ---
546
  st.subheader("Tool Definitions")
547
+ for tool_class in [CodeGenerationTool, DataRetrievalTool, CodeExecutionTool, CodeDebuggingTool, CodeSummarizationTool, CodeTranslationTool, CodeOptimizationTool, CodeDocumentationTool, ImageGenerationTool, ImageEditingTool, ImageAnalysisTool, TextGenerationTool, QuestionAnsweringTool]:
548
  tool = tool_class()
549
  st.write(f"**{tool.name}**")
550
  st.write(f" Description: {tool.description}")
 
552
  # --- Displaying Example Output ---
553
  st.subheader("Example Output")
554
  code_generation_tool = CodeGenerationTool()
555
+ st.write(f"""Code Generation Tool Output: {code_generation_tool.run({'language': 'python', 'code_description': "print('Hello, World!')"})}""")
556
 
557
  data_retrieval_tool = DataRetrievalTool()
558
+ st.write(f"""Data Retrieval Tool Output: {data_retrieval_tool.run({'data_source': 'https://example.com/data', 'data_query': 'some information'})}""")
559
 
560
  code_execution_tool = CodeExecutionTool()
561
  st.write(f"""Code Execution Tool Output: {code_execution_tool.run({'code': "print('Hello, World!')"})}""")
 
567
  st.write(f"""Code Summarization Tool Output: {code_summarization_tool.run({'code': "print('Hello, World!')"})}""")
568
 
569
  code_translation_tool = CodeTranslationTool()
570
+ st.write(f"""Code Translation Tool Output: {code_translation_tool.run({'code': "print('Hello, World!')", 'target_language': 'javascript'})}""")
571
 
572
  code_optimization_tool = CodeOptimizationTool()
573
  st.write(f"""Code Optimization Tool Output: {code_optimization_tool.run({'code': "print('Hello, World!')"})}""")
 
579
  st.write(f"""Image Generation Tool Output: {image_generation_tool.run({'description': 'A cat sitting on a couch'})}""")
580
 
581
  image_editing_tool = ImageEditingTool()
582
+ st.write(f"""Image Editing Tool Output: {image_editing_tool.run({'image_url': 'https://example.com/image.jpg', 'editing_instructions': 'Make the cat smile'})}""")
583
 
584
  image_analysis_tool = ImageAnalysisTool()
585
+ st.write(f"""Image Analysis Tool Output: {image_analysis_tool.run({'image_url': 'https://example.com/image.jpg'})}""")
586
+
587
+ question_answering_tool = QuestionAnsweringTool()
588
+ st.write(f"""Question Answering Tool Output: {question_answering_tool.run({'question': 'What is the capital of France?', 'context': 'France is a country in Western Europe. Its capital is Paris.'})}""")