Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,25 @@ import streamlit as st
|
|
2 |
from huggingface_hub import InferenceClient
|
3 |
import os
|
4 |
import pickle
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
st.title("CODEFUSSION ☄")
|
7 |
|
@@ -13,18 +32,19 @@ class Agent:
|
|
13 |
self.tools = tools
|
14 |
self.knowledge_base = knowledge_base
|
15 |
self.memory = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
def act(self, prompt, context):
|
18 |
self.memory.append((prompt, context))
|
19 |
-
action = self.
|
20 |
return action
|
21 |
|
22 |
-
def choose_action(self, prompt, context):
|
23 |
-
# Placeholder for action selection logic
|
24 |
-
# This should be implemented based on the specific agent's capabilities
|
25 |
-
# and the available tools
|
26 |
-
return {"tool": "Code Generation", "arguments": {"language": "python", "code": "print('Hello, World!')"}}
|
27 |
-
|
28 |
def observe(self, observation):
|
29 |
# Placeholder for observation processing
|
30 |
# This should be implemented based on the agent's capabilities and the nature of the observation
|
@@ -54,117 +74,206 @@ class Tool:
|
|
54 |
class CodeGenerationTool(Tool):
|
55 |
def __init__(self):
|
56 |
super().__init__("Code Generation", "Generates code snippets in various languages.")
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
def run(self, arguments):
|
59 |
-
# This is a simplified example, real implementation would use a code generation model
|
60 |
language = arguments.get("language", "python")
|
61 |
-
|
62 |
-
|
|
|
63 |
|
64 |
class DataRetrievalTool(Tool):
|
65 |
def __init__(self):
|
66 |
super().__init__("Data Retrieval", "Accesses data from APIs, databases, or files.")
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
def run(self, arguments):
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
72 |
|
73 |
class TextGenerationTool(Tool):
|
74 |
def __init__(self):
|
75 |
super().__init__("Text Generation", "Generates human-like text based on a given prompt.")
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
def run(self, arguments):
|
78 |
-
|
79 |
-
|
80 |
-
return {"output":
|
81 |
|
82 |
class CodeExecutionTool(Tool):
|
83 |
def __init__(self):
|
84 |
super().__init__("Code Execution", "Runs code snippets in various languages.")
|
85 |
|
86 |
def run(self, arguments):
|
87 |
-
# This is a simplified example, real implementation would use a code execution engine
|
88 |
code = arguments.get("code", "print('Hello, World!')")
|
89 |
-
|
|
|
|
|
|
|
|
|
90 |
|
91 |
class CodeDebuggingTool(Tool):
|
92 |
def __init__(self):
|
93 |
super().__init__("Code Debugging", "Identifies and resolves errors in code snippets.")
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
def run(self, arguments):
|
96 |
-
# This is a simplified example, real implementation would use a code debugger
|
97 |
code = arguments.get("code", "print('Hello, World!')")
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
class CodeSummarizationTool(Tool):
|
101 |
def __init__(self):
|
102 |
super().__init__("Code Summarization", "Provides a concise overview of the functionality of a code snippet.")
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
def run(self, arguments):
|
105 |
-
# This is a simplified example, real implementation would use a code summarization model
|
106 |
code = arguments.get("code", "print('Hello, World!')")
|
107 |
-
|
|
|
108 |
|
109 |
class CodeTranslationTool(Tool):
|
110 |
def __init__(self):
|
111 |
super().__init__("Code Translation", "Translates code snippets between different programming languages.")
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
def run(self, arguments):
|
114 |
-
# This is a simplified example, real implementation would use a code translation model
|
115 |
code = arguments.get("code", "print('Hello, World!')")
|
116 |
-
|
|
|
|
|
117 |
|
118 |
class CodeOptimizationTool(Tool):
|
119 |
def __init__(self):
|
120 |
super().__init__("Code Optimization", "Optimizes code for performance and efficiency.")
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
def run(self, arguments):
|
123 |
-
# This is a simplified example, real implementation would use a code optimization model
|
124 |
code = arguments.get("code", "print('Hello, World!')")
|
125 |
-
|
|
|
126 |
|
127 |
class CodeDocumentationTool(Tool):
|
128 |
def __init__(self):
|
129 |
super().__init__("Code Documentation", "Generates documentation for code snippets.")
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
def run(self, arguments):
|
132 |
-
# This is a simplified example, real implementation would use a code documentation generator
|
133 |
code = arguments.get("code", "print('Hello, World!')")
|
134 |
-
|
|
|
135 |
|
136 |
class ImageGenerationTool(Tool):
|
137 |
def __init__(self):
|
138 |
super().__init__("Image Generation", "Generates images based on text descriptions.")
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
def run(self, arguments):
|
141 |
-
# This is a simplified example, real implementation would use an image generation model
|
142 |
description = arguments.get("description", "A cat sitting on a couch")
|
143 |
-
|
|
|
144 |
|
145 |
class ImageEditingTool(Tool):
|
146 |
def __init__(self):
|
147 |
super().__init__("Image Editing", "Modifying existing images.")
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
|
149 |
def run(self, arguments):
|
150 |
-
|
151 |
-
|
152 |
-
|
|
|
153 |
|
154 |
class ImageAnalysisTool(Tool):
|
155 |
def __init__(self):
|
156 |
super().__init__("Image Analysis", "Extracting information from images, such as objects, scenes, and emotions.")
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
|
158 |
def run(self, arguments):
|
159 |
-
|
160 |
-
|
161 |
-
return {"output": f"Image analysis results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
|
163 |
# --- Agent Pool ---
|
164 |
agent_pool = {
|
165 |
-
"IdeaIntake": Agent("IdeaIntake", "Idea Intake", [DataRetrievalTool(), CodeGenerationTool(), TextGenerationTool()], knowledge_base=""),
|
166 |
-
"CodeBuilder": Agent("CodeBuilder", "Code Builder", [CodeGenerationTool(), CodeDebuggingTool(), CodeOptimizationTool()], knowledge_base=""),
|
167 |
-
"ImageCreator": Agent("ImageCreator", "Image Creator", [ImageGenerationTool(), ImageEditingTool()], knowledge_base=""),
|
168 |
}
|
169 |
|
170 |
# --- Workflow Definitions ---
|
@@ -176,19 +285,13 @@ class Workflow:
|
|
176 |
self.description = description
|
177 |
|
178 |
def run(self, prompt, context):
|
179 |
-
# Placeholder for workflow execution logic
|
180 |
-
# This should be implemented based on the specific workflow's steps
|
181 |
-
# and the interaction between the agents
|
182 |
for agent in self.agents:
|
183 |
action = agent.act(prompt, context)
|
184 |
-
# Execute the tool
|
185 |
if action.get("tool"):
|
186 |
tool = next((t for t in agent.tools if t.name == action["tool"]), None)
|
187 |
if tool:
|
188 |
output = tool.run(action["arguments"])
|
189 |
-
# Update context
|
190 |
context.update(output)
|
191 |
-
# Observe the output
|
192 |
agent.observe(output)
|
193 |
return context
|
194 |
|
@@ -441,7 +544,7 @@ st.write(f""" Description: {DevSandboxWorkflow().description}""")
|
|
441 |
|
442 |
# --- Displaying Tool Definitions ---
|
443 |
st.subheader("Tool Definitions")
|
444 |
-
for tool_class in [CodeGenerationTool, DataRetrievalTool, CodeExecutionTool, CodeDebuggingTool, CodeSummarizationTool, CodeTranslationTool, CodeOptimizationTool, CodeDocumentationTool, ImageGenerationTool, ImageEditingTool, ImageAnalysisTool, TextGenerationTool]:
|
445 |
tool = tool_class()
|
446 |
st.write(f"**{tool.name}**")
|
447 |
st.write(f" Description: {tool.description}")
|
@@ -449,10 +552,10 @@ for tool_class in [CodeGenerationTool, DataRetrievalTool, CodeExecutionTool, Cod
|
|
449 |
# --- Displaying Example Output ---
|
450 |
st.subheader("Example Output")
|
451 |
code_generation_tool = CodeGenerationTool()
|
452 |
-
st.write(f"""Code Generation Tool Output: {code_generation_tool.run({'language': 'python', '
|
453 |
|
454 |
data_retrieval_tool = DataRetrievalTool()
|
455 |
-
st.write(f"""Data Retrieval Tool Output: {data_retrieval_tool.run({'
|
456 |
|
457 |
code_execution_tool = CodeExecutionTool()
|
458 |
st.write(f"""Code Execution Tool Output: {code_execution_tool.run({'code': "print('Hello, World!')"})}""")
|
@@ -464,7 +567,7 @@ code_summarization_tool = CodeSummarizationTool()
|
|
464 |
st.write(f"""Code Summarization Tool Output: {code_summarization_tool.run({'code': "print('Hello, World!')"})}""")
|
465 |
|
466 |
code_translation_tool = CodeTranslationTool()
|
467 |
-
st.write(f"""Code Translation Tool Output: {code_translation_tool.run({'code': "print('Hello, World!')"})}""")
|
468 |
|
469 |
code_optimization_tool = CodeOptimizationTool()
|
470 |
st.write(f"""Code Optimization Tool Output: {code_optimization_tool.run({'code': "print('Hello, World!')"})}""")
|
@@ -476,7 +579,10 @@ image_generation_tool = ImageGenerationTool()
|
|
476 |
st.write(f"""Image Generation Tool Output: {image_generation_tool.run({'description': 'A cat sitting on a couch'})}""")
|
477 |
|
478 |
image_editing_tool = ImageEditingTool()
|
479 |
-
st.write(f"""Image Editing Tool Output: {image_editing_tool.run({'
|
480 |
|
481 |
image_analysis_tool = ImageAnalysisTool()
|
482 |
-
st.write(f"""Image Analysis Tool Output: {image_analysis_tool.run({'
|
|
|
|
|
|
|
|
2 |
from huggingface_hub import InferenceClient
|
3 |
import os
|
4 |
import pickle
|
5 |
+
from langchain.llms import HuggingFaceHub
|
6 |
+
from langchain.chains import ConversationChain
|
7 |
+
from langchain.memory import ConversationBufferMemory
|
8 |
+
from langchain.tools import Tool
|
9 |
+
from langchain.agents import ToolAgent, AgentType
|
10 |
+
from langchain.chains import LLMChain
|
11 |
+
from langchain.prompts import PromptTemplate
|
12 |
+
from langchain.chains.question_answering import load_qa_chain
|
13 |
+
from langchain.document_loaders import TextLoader
|
14 |
+
from langchain.text_splitter import CharacterTextSplitter
|
15 |
+
from langchain.embeddings import HuggingFaceEmbeddings # Use Hugging Face Embeddings
|
16 |
+
from langchain.vectorstores import FAISS
|
17 |
+
from langchain.chains import RetrievalQA
|
18 |
+
from langchain.chains.conversational_retrieval_qa import ConversationalRetrievalQAChain
|
19 |
+
from langchain.chains.summarization import load_summarization_chain
|
20 |
+
from langchain.chains.base import Chain
|
21 |
+
from langchain.chains.llm import LLMChain
|
22 |
+
from langchain.prompts import PromptTemplate
|
23 |
+
from typing import List, Dict, Any, Optional
|
24 |
|
25 |
st.title("CODEFUSSION ☄")
|
26 |
|
|
|
32 |
self.tools = tools
|
33 |
self.knowledge_base = knowledge_base
|
34 |
self.memory = []
|
35 |
+
self.llm = HuggingFaceHub(repo_id="google/flan-t5-xl", model_kwargs={"temperature": 0.5}) # Use a language model for action selection
|
36 |
+
self.agent = ToolAgent(
|
37 |
+
llm=self.llm,
|
38 |
+
tools=self.tools,
|
39 |
+
agent_type=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
|
40 |
+
verbose=True
|
41 |
+
)
|
42 |
|
43 |
def act(self, prompt, context):
|
44 |
self.memory.append((prompt, context))
|
45 |
+
action = self.agent.run(prompt, context)
|
46 |
return action
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
def observe(self, observation):
|
49 |
# Placeholder for observation processing
|
50 |
# This should be implemented based on the agent's capabilities and the nature of the observation
|
|
|
74 |
class CodeGenerationTool(Tool):
|
75 |
def __init__(self):
|
76 |
super().__init__("Code Generation", "Generates code snippets in various languages.")
|
77 |
+
self.llm = HuggingFaceHub(repo_id="google/flan-t5-xl", model_kwargs={"temperature": 0.5})
|
78 |
+
self.prompt_template = PromptTemplate(
|
79 |
+
input_variables=["language", "code_description"],
|
80 |
+
template="Generate {language} code for: {code_description}"
|
81 |
+
)
|
82 |
+
self.chain = LLMChain(llm=self.llm, prompt=self.prompt_template)
|
83 |
|
84 |
def run(self, arguments):
|
|
|
85 |
language = arguments.get("language", "python")
|
86 |
+
code_description = arguments.get("code_description", "print('Hello, World!')")
|
87 |
+
code = self.chain.run(language=language, code_description=code_description)
|
88 |
+
return {"output": code}
|
89 |
|
90 |
class DataRetrievalTool(Tool):
|
91 |
def __init__(self):
|
92 |
super().__init__("Data Retrieval", "Accesses data from APIs, databases, or files.")
|
93 |
+
self.llm = HuggingFaceHub(repo_id="google/flan-t5-xl", model_kwargs={"temperature": 0.5})
|
94 |
+
self.prompt_template = PromptTemplate(
|
95 |
+
input_variables=["data_source", "data_query"],
|
96 |
+
template="Retrieve data from {data_source} based on: {data_query}"
|
97 |
+
)
|
98 |
+
self.chain = LLMChain(llm=self.llm, prompt=self.prompt_template)
|
99 |
|
100 |
def run(self, arguments):
|
101 |
+
data_source = arguments.get("data_source", "https://example.com/data")
|
102 |
+
data_query = arguments.get("data_query", "some information")
|
103 |
+
data = self.chain.run(data_source=data_source, data_query=data_query)
|
104 |
+
return {"output": data}
|
105 |
|
106 |
class TextGenerationTool(Tool):
|
107 |
def __init__(self):
|
108 |
super().__init__("Text Generation", "Generates human-like text based on a given prompt.")
|
109 |
+
self.llm = HuggingFaceHub(repo_id="google/flan-t5-xl", model_kwargs={"temperature": 0.5})
|
110 |
+
self.prompt_template = PromptTemplate(
|
111 |
+
input_variables=["text_prompt"],
|
112 |
+
template="Generate text based on: {text_prompt}"
|
113 |
+
)
|
114 |
+
self.chain = LLMChain(llm=self.llm, prompt=self.prompt_template)
|
115 |
|
116 |
def run(self, arguments):
|
117 |
+
text_prompt = arguments.get("text_prompt", "Write a short story about a cat.")
|
118 |
+
text = self.chain.run(text_prompt=text_prompt)
|
119 |
+
return {"output": text}
|
120 |
|
121 |
class CodeExecutionTool(Tool):
|
122 |
def __init__(self):
|
123 |
super().__init__("Code Execution", "Runs code snippets in various languages.")
|
124 |
|
125 |
def run(self, arguments):
|
|
|
126 |
code = arguments.get("code", "print('Hello, World!')")
|
127 |
+
try:
|
128 |
+
exec(code)
|
129 |
+
return {"output": f"Code executed: {code}"}
|
130 |
+
except Exception as e:
|
131 |
+
return {"output": f"Error executing code: {e}"}
|
132 |
|
133 |
class CodeDebuggingTool(Tool):
|
134 |
def __init__(self):
|
135 |
super().__init__("Code Debugging", "Identifies and resolves errors in code snippets.")
|
136 |
+
self.llm = HuggingFaceHub(repo_id="google/flan-t5-xl", model_kwargs={"temperature": 0.5})
|
137 |
+
self.prompt_template = PromptTemplate(
|
138 |
+
input_variables=["code", "error_message"],
|
139 |
+
template="Debug the following code:\n{code}\n\nError message: {error_message}"
|
140 |
+
)
|
141 |
+
self.chain = LLMChain(llm=self.llm, prompt=self.prompt_template)
|
142 |
|
143 |
def run(self, arguments):
|
|
|
144 |
code = arguments.get("code", "print('Hello, World!')")
|
145 |
+
try:
|
146 |
+
exec(code)
|
147 |
+
return {"output": f"Code debugged: {code}"}
|
148 |
+
except Exception as e:
|
149 |
+
error_message = str(e)
|
150 |
+
debugged_code = self.chain.run(code=code, error_message=error_message)
|
151 |
+
return {"output": f"Debugged code:\n{debugged_code}"}
|
152 |
|
153 |
class CodeSummarizationTool(Tool):
|
154 |
def __init__(self):
|
155 |
super().__init__("Code Summarization", "Provides a concise overview of the functionality of a code snippet.")
|
156 |
+
self.llm = HuggingFaceHub(repo_id="google/flan-t5-xl", model_kwargs={"temperature": 0.5})
|
157 |
+
self.prompt_template = PromptTemplate(
|
158 |
+
input_variables=["code"],
|
159 |
+
template="Summarize the functionality of the following code:\n{code}"
|
160 |
+
)
|
161 |
+
self.chain = LLMChain(llm=self.llm, prompt=self.prompt_template)
|
162 |
|
163 |
def run(self, arguments):
|
|
|
164 |
code = arguments.get("code", "print('Hello, World!')")
|
165 |
+
summary = self.chain.run(code=code)
|
166 |
+
return {"output": f"Code summary: {summary}"}
|
167 |
|
168 |
class CodeTranslationTool(Tool):
|
169 |
def __init__(self):
|
170 |
super().__init__("Code Translation", "Translates code snippets between different programming languages.")
|
171 |
+
self.llm = HuggingFaceHub(repo_id="google/flan-t5-xl", model_kwargs={"temperature": 0.5})
|
172 |
+
self.prompt_template = PromptTemplate(
|
173 |
+
input_variables=["code", "target_language"],
|
174 |
+
template="Translate the following code to {target_language}:\n{code}"
|
175 |
+
)
|
176 |
+
self.chain = LLMChain(llm=self.llm, prompt=self.prompt_template)
|
177 |
|
178 |
def run(self, arguments):
|
|
|
179 |
code = arguments.get("code", "print('Hello, World!')")
|
180 |
+
target_language = arguments.get("target_language", "javascript")
|
181 |
+
translated_code = self.chain.run(code=code, target_language=target_language)
|
182 |
+
return {"output": f"Translated code:\n{translated_code}"}
|
183 |
|
184 |
class CodeOptimizationTool(Tool):
|
185 |
def __init__(self):
|
186 |
super().__init__("Code Optimization", "Optimizes code for performance and efficiency.")
|
187 |
+
self.llm = HuggingFaceHub(repo_id="google/flan-t5-xl", model_kwargs={"temperature": 0.5})
|
188 |
+
self.prompt_template = PromptTemplate(
|
189 |
+
input_variables=["code"],
|
190 |
+
template="Optimize the following code for performance and efficiency:\n{code}"
|
191 |
+
)
|
192 |
+
self.chain = LLMChain(llm=self.llm, prompt=self.prompt_template)
|
193 |
|
194 |
def run(self, arguments):
|
|
|
195 |
code = arguments.get("code", "print('Hello, World!')")
|
196 |
+
optimized_code = self.chain.run(code=code)
|
197 |
+
return {"output": f"Optimized code:\n{optimized_code}"}
|
198 |
|
199 |
class CodeDocumentationTool(Tool):
|
200 |
def __init__(self):
|
201 |
super().__init__("Code Documentation", "Generates documentation for code snippets.")
|
202 |
+
self.llm = HuggingFaceHub(repo_id="google/flan-t5-xl", model_kwargs={"temperature": 0.5})
|
203 |
+
self.prompt_template = PromptTemplate(
|
204 |
+
input_variables=["code"],
|
205 |
+
template="Generate documentation for the following code:\n{code}"
|
206 |
+
)
|
207 |
+
self.chain = LLMChain(llm=self.llm, prompt=self.prompt_template)
|
208 |
|
209 |
def run(self, arguments):
|
|
|
210 |
code = arguments.get("code", "print('Hello, World!')")
|
211 |
+
documentation = self.chain.run(code=code)
|
212 |
+
return {"output": f"Code documentation:\n{documentation}"}
|
213 |
|
214 |
class ImageGenerationTool(Tool):
|
215 |
def __init__(self):
|
216 |
super().__init__("Image Generation", "Generates images based on text descriptions.")
|
217 |
+
self.llm = HuggingFaceHub(repo_id="google/flan-t5-xl", model_kwargs={"temperature": 0.5})
|
218 |
+
self.prompt_template = PromptTemplate(
|
219 |
+
input_variables=["description"],
|
220 |
+
template="Generate an image based on the description: {description}"
|
221 |
+
)
|
222 |
+
self.chain = LLMChain(llm=self.llm, prompt=self.prompt_template)
|
223 |
|
224 |
def run(self, arguments):
|
|
|
225 |
description = arguments.get("description", "A cat sitting on a couch")
|
226 |
+
image_url = self.chain.run(description=description)
|
227 |
+
return {"output": f"Generated image: {image_url}"}
|
228 |
|
229 |
class ImageEditingTool(Tool):
|
230 |
def __init__(self):
|
231 |
super().__init__("Image Editing", "Modifying existing images.")
|
232 |
+
self.llm = HuggingFaceHub(repo_id="google/flan-t5-xl", model_kwargs={"temperature": 0.5})
|
233 |
+
self.prompt_template = PromptTemplate(
|
234 |
+
input_variables=["image_url", "editing_instructions"],
|
235 |
+
template="Edit the image at {image_url} according to the instructions: {editing_instructions}"
|
236 |
+
)
|
237 |
+
self.chain = LLMChain(llm=self.llm, prompt=self.prompt_template)
|
238 |
|
239 |
def run(self, arguments):
|
240 |
+
image_url = arguments.get("image_url", "https://example.com/image.jpg")
|
241 |
+
editing_instructions = arguments.get("editing_instructions", "Make the cat smile")
|
242 |
+
edited_image_url = self.chain.run(image_url=image_url, editing_instructions=editing_instructions)
|
243 |
+
return {"output": f"Edited image: {edited_image_url}"}
|
244 |
|
245 |
class ImageAnalysisTool(Tool):
|
246 |
def __init__(self):
|
247 |
super().__init__("Image Analysis", "Extracting information from images, such as objects, scenes, and emotions.")
|
248 |
+
self.llm = HuggingFaceHub(repo_id="google/flan-t5-xl", model_kwargs={"temperature": 0.5})
|
249 |
+
self.prompt_template = PromptTemplate(
|
250 |
+
input_variables=["image_url"],
|
251 |
+
template="Analyze the image at {image_url} and provide information about objects, scenes, and emotions."
|
252 |
+
)
|
253 |
+
self.chain = LLMChain(llm=self.llm, prompt=self.prompt_template)
|
254 |
|
255 |
def run(self, arguments):
|
256 |
+
image_url = arguments.get("image_url", "https://example.com/image.jpg")
|
257 |
+
analysis_results = self.chain.run(image_url=image_url)
|
258 |
+
return {"output": f"Image analysis results:\n{analysis_results}"}
|
259 |
+
|
260 |
+
class QuestionAnsweringTool(Tool):
|
261 |
+
def __init__(self):
|
262 |
+
super().__init__("Question Answering", "Answers questions based on provided context.")
|
263 |
+
self.llm = HuggingFaceHub(repo_id="google/flan-t5-xl", model_kwargs={"temperature": 0.5})
|
264 |
+
self.qa_chain = load_qa_chain(self.llm) # Use a question answering chain
|
265 |
+
|
266 |
+
def run(self, arguments):
|
267 |
+
question = arguments.get("question", "What is the capital of France?")
|
268 |
+
context = arguments.get("context", "France is a country in Western Europe. Its capital is Paris.")
|
269 |
+
answer = self.qa_chain.run(question=question, context=context)
|
270 |
+
return {"output": answer}
|
271 |
|
272 |
# --- Agent Pool ---
|
273 |
agent_pool = {
|
274 |
+
"IdeaIntake": Agent("IdeaIntake", "Idea Intake", [DataRetrievalTool(), CodeGenerationTool(), TextGenerationTool(), QuestionAnsweringTool()], knowledge_base=""),
|
275 |
+
"CodeBuilder": Agent("CodeBuilder", "Code Builder", [CodeGenerationTool(), CodeDebuggingTool(), CodeOptimizationTool(), CodeExecutionTool(), CodeSummarizationTool, CodeTranslationTool, CodeDocumentationTool], knowledge_base=""),
|
276 |
+
"ImageCreator": Agent("ImageCreator", "Image Creator", [ImageGenerationTool(), ImageEditingTool(), ImageAnalysisTool], knowledge_base=""),
|
277 |
}
|
278 |
|
279 |
# --- Workflow Definitions ---
|
|
|
285 |
self.description = description
|
286 |
|
287 |
def run(self, prompt, context):
|
|
|
|
|
|
|
288 |
for agent in self.agents:
|
289 |
action = agent.act(prompt, context)
|
|
|
290 |
if action.get("tool"):
|
291 |
tool = next((t for t in agent.tools if t.name == action["tool"]), None)
|
292 |
if tool:
|
293 |
output = tool.run(action["arguments"])
|
|
|
294 |
context.update(output)
|
|
|
295 |
agent.observe(output)
|
296 |
return context
|
297 |
|
|
|
544 |
|
545 |
# --- Displaying Tool Definitions ---
|
546 |
st.subheader("Tool Definitions")
|
547 |
+
for tool_class in [CodeGenerationTool, DataRetrievalTool, CodeExecutionTool, CodeDebuggingTool, CodeSummarizationTool, CodeTranslationTool, CodeOptimizationTool, CodeDocumentationTool, ImageGenerationTool, ImageEditingTool, ImageAnalysisTool, TextGenerationTool, QuestionAnsweringTool]:
|
548 |
tool = tool_class()
|
549 |
st.write(f"**{tool.name}**")
|
550 |
st.write(f" Description: {tool.description}")
|
|
|
552 |
# --- Displaying Example Output ---
|
553 |
st.subheader("Example Output")
|
554 |
code_generation_tool = CodeGenerationTool()
|
555 |
+
st.write(f"""Code Generation Tool Output: {code_generation_tool.run({'language': 'python', 'code_description': "print('Hello, World!')"})}""")
|
556 |
|
557 |
data_retrieval_tool = DataRetrievalTool()
|
558 |
+
st.write(f"""Data Retrieval Tool Output: {data_retrieval_tool.run({'data_source': 'https://example.com/data', 'data_query': 'some information'})}""")
|
559 |
|
560 |
code_execution_tool = CodeExecutionTool()
|
561 |
st.write(f"""Code Execution Tool Output: {code_execution_tool.run({'code': "print('Hello, World!')"})}""")
|
|
|
567 |
st.write(f"""Code Summarization Tool Output: {code_summarization_tool.run({'code': "print('Hello, World!')"})}""")
|
568 |
|
569 |
code_translation_tool = CodeTranslationTool()
|
570 |
+
st.write(f"""Code Translation Tool Output: {code_translation_tool.run({'code': "print('Hello, World!')", 'target_language': 'javascript'})}""")
|
571 |
|
572 |
code_optimization_tool = CodeOptimizationTool()
|
573 |
st.write(f"""Code Optimization Tool Output: {code_optimization_tool.run({'code': "print('Hello, World!')"})}""")
|
|
|
579 |
st.write(f"""Image Generation Tool Output: {image_generation_tool.run({'description': 'A cat sitting on a couch'})}""")
|
580 |
|
581 |
image_editing_tool = ImageEditingTool()
|
582 |
+
st.write(f"""Image Editing Tool Output: {image_editing_tool.run({'image_url': 'https://example.com/image.jpg', 'editing_instructions': 'Make the cat smile'})}""")
|
583 |
|
584 |
image_analysis_tool = ImageAnalysisTool()
|
585 |
+
st.write(f"""Image Analysis Tool Output: {image_analysis_tool.run({'image_url': 'https://example.com/image.jpg'})}""")
|
586 |
+
|
587 |
+
question_answering_tool = QuestionAnsweringTool()
|
588 |
+
st.write(f"""Question Answering Tool Output: {question_answering_tool.run({'question': 'What is the capital of France?', 'context': 'France is a country in Western Europe. Its capital is Paris.'})}""")
|