Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,29 +2,187 @@ import streamlit as st
|
|
2 |
from huggingface_hub import InferenceClient
|
3 |
import os
|
4 |
import pickle
|
5 |
-
from langchain_community.
|
6 |
-
from
|
7 |
-
from
|
8 |
-
from
|
9 |
-
from
|
10 |
-
from
|
11 |
-
from
|
12 |
-
from
|
13 |
-
from
|
14 |
-
from
|
15 |
-
from
|
16 |
-
from
|
17 |
-
from
|
18 |
-
from langchain.chains.summarization import load_summarization_chain
|
19 |
-
from langchain.chains.base import Chain
|
20 |
-
from langchain.chains.llm import LLMChain
|
21 |
-
from langchain.prompts import PromptTemplate
|
22 |
-
from langchain.agents import initialize_agent, AgentType
|
23 |
-
from langchain.tools import Tool
|
24 |
from langchain_community.llms import HuggingFaceHub
|
25 |
from typing import List, Dict, Any, Optional
|
26 |
|
27 |
-
st.title("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
# --- Agent Definitions ---
|
30 |
class Agent:
|
@@ -48,13 +206,11 @@ class Agent:
|
|
48 |
return action
|
49 |
|
50 |
def observe(self, observation):
|
51 |
-
#
|
52 |
-
|
53 |
-
pass
|
54 |
|
55 |
def learn(self, data):
|
56 |
-
#
|
57 |
-
# This should be implemented based on the agent's capabilities and the type of data
|
58 |
pass
|
59 |
|
60 |
def __str__(self):
|
@@ -67,9 +223,7 @@ class Tool:
|
|
67 |
self.description = description
|
68 |
|
69 |
def run(self, arguments):
|
70 |
-
#
|
71 |
-
# This should be implemented based on the specific tool's functionality
|
72 |
-
# and the provided arguments
|
73 |
return {"output": "Tool Output"}
|
74 |
|
75 |
# --- Tool Examples ---
|
@@ -274,8 +428,8 @@ class QuestionAnsweringTool(Tool):
|
|
274 |
# --- Agent Pool ---
|
275 |
agent_pool = {
|
276 |
"IdeaIntake": Agent("IdeaIntake", "Idea Intake", [DataRetrievalTool(), CodeGenerationTool(), TextGenerationTool(), QuestionAnsweringTool()], knowledge_base=""),
|
277 |
-
"CodeBuilder": Agent("CodeBuilder", "Code Builder", [CodeGenerationTool(), CodeDebuggingTool(), CodeOptimizationTool(), CodeExecutionTool(), CodeSummarizationTool, CodeTranslationTool, CodeDocumentationTool], knowledge_base=""),
|
278 |
-
"ImageCreator": Agent("ImageCreator", "Image Creator", [ImageGenerationTool(), ImageEditingTool(), ImageAnalysisTool], knowledge_base=""),
|
279 |
}
|
280 |
|
281 |
# --- Workflow Definitions ---
|
@@ -318,170 +472,6 @@ class DevSandboxWorkflow(Workflow):
|
|
318 |
def __init__(self):
|
319 |
super().__init__("Dev Sandbox", [agent_pool["IdeaIntake"], agent_pool["CodeBuilder"]], "Experiment with code", "A workflow for experimenting with code.")
|
320 |
|
321 |
-
# --- Model Definitions ---
|
322 |
-
class Model:
|
323 |
-
def __init__(self, name, description, model_link):
|
324 |
-
self.name = name
|
325 |
-
self.description = description
|
326 |
-
self.model_link = model_link
|
327 |
-
self.inference_client = InferenceClient(model=model_link)
|
328 |
-
|
329 |
-
def generate_text(self, prompt, temperature=0.5, max_new_tokens=4096):
|
330 |
-
try:
|
331 |
-
output = self.inference_client.text_generation(
|
332 |
-
prompt,
|
333 |
-
temperature=temperature,
|
334 |
-
max_new_tokens=max_new_tokens,
|
335 |
-
stream=True
|
336 |
-
)
|
337 |
-
response = "".join(output)
|
338 |
-
except ValueError as e:
|
339 |
-
if "Input validation error" in str(e):
|
340 |
-
return "Error: The input prompt is too long. Please try a shorter prompt."
|
341 |
-
else:
|
342 |
-
return f"An error occurred: {e}"
|
343 |
-
return response
|
344 |
-
|
345 |
-
# --- Model Examples ---
|
346 |
-
class LegacyLiftModel(Model):
|
347 |
-
def __init__(self):
|
348 |
-
super().__init__("LegacyLift🚀", "The LegacyLift model is a Large Language Model (LLM) that's able to have question and answer interactions.\n \n\nThis model is best for minimal problem-solving, content writing, and daily tips.", "mistralai/Mistral-7B-Instruct-v0.2")
|
349 |
-
|
350 |
-
class ModernMigrateModel(Model):
|
351 |
-
def __init__(self):
|
352 |
-
super().__init__("ModernMigrate⭐", "The ModernMigrate model is a Large Language Model (LLM) that's able to have question and answer interactions.\n \n\nThis model excels in coding, logical reasoning, and high-speed inference.", "mistralai/Mixtral-8x7B-Instruct-v0.1")
|
353 |
-
|
354 |
-
class RetroRecodeModel(Model):
|
355 |
-
def __init__(self):
|
356 |
-
super().__init__("RetroRecode🔄", "The RetroRecode model is a Large Language Model (LLM) that's able to have question and answer interactions.\n \n\nThis model is best suited for critical development, practical knowledge, and serverless inference.", "microsoft/Phi-3-mini-4k-instruct")
|
357 |
-
|
358 |
-
# --- Streamlit Interface ---
|
359 |
-
model_links = {
|
360 |
-
"LegacyLift🚀": "mistralai/Mistral-7B-Instruct-v0.2",
|
361 |
-
"ModernMigrate⭐": "mistralai/Mixtral-8x7B-Instruct-v0.1",
|
362 |
-
"RetroRecode🔄": "microsoft/Phi-3-mini-4k-instruct"
|
363 |
-
}
|
364 |
-
|
365 |
-
model_info = {
|
366 |
-
"LegacyLift🚀": {
|
367 |
-
'description': "The LegacyLift model is a Large Language Model (LLM) that's able to have question and answer interactions.\n \n\nThis model is best for minimal problem-solving, content writing, and daily tips.",
|
368 |
-
'logo': './11.jpg'
|
369 |
-
},
|
370 |
-
"ModernMigrate⭐": {
|
371 |
-
'description': "The ModernMigrate model is a Large Language Model (LLM) that's able to have question and answer interactions.\n \n\nThis model excels in coding, logical reasoning, and high-speed inference.",
|
372 |
-
'logo': './2.jpg'
|
373 |
-
},
|
374 |
-
"RetroRecode🔄": {
|
375 |
-
'description': "The RetroRecode model is a Large Language Model (LLM) that's able to have question and answer interactions.\n \n\nThis model is best suited for critical development, practical knowledge, and serverless inference.",
|
376 |
-
'logo': './3.jpg'
|
377 |
-
},
|
378 |
-
}
|
379 |
-
|
380 |
-
def format_prompt(message, conversation_history, custom_instructions=None):
|
381 |
-
prompt = ""
|
382 |
-
if custom_instructions:
|
383 |
-
prompt += f"\[INST\] {custom_instructions} $$/INST$$\n"
|
384 |
-
|
385 |
-
# Add conversation history to the prompt
|
386 |
-
prompt += "\[CONV_HISTORY\]\n"
|
387 |
-
for role, content in conversation_history:
|
388 |
-
prompt += f"{role.upper()}: {content}\n"
|
389 |
-
prompt += "\[/CONV_HISTORY\]\n"
|
390 |
-
|
391 |
-
# Add the current message
|
392 |
-
prompt += f"\[INST\] {message} $$/INST$$\n"
|
393 |
-
|
394 |
-
# Add the response format
|
395 |
-
prompt += "\[RESPONSE\]\n"
|
396 |
-
|
397 |
-
return prompt
|
398 |
-
|
399 |
-
def reset_conversation():
|
400 |
-
'''
|
401 |
-
Resets Conversation
|
402 |
-
'''
|
403 |
-
st.session_state.conversation = []
|
404 |
-
st.session_state.messages = []
|
405 |
-
st.session_state.chat_state = "reset"
|
406 |
-
|
407 |
-
def load_conversation_history():
|
408 |
-
history_file = "conversation_history.pickle"
|
409 |
-
if os.path.exists(history_file):
|
410 |
-
with open(history_file, "rb") as f:
|
411 |
-
conversation_history = pickle.load(f)
|
412 |
-
else:
|
413 |
-
conversation_history = []
|
414 |
-
return conversation_history
|
415 |
-
|
416 |
-
def save_conversation_history(conversation_history):
|
417 |
-
history_file = "conversation_history.pickle"
|
418 |
-
with open(history_file, "wb") as f:
|
419 |
-
pickle.dump(conversation_history, f)
|
420 |
-
|
421 |
-
models = [key for key in model_links.keys()]
|
422 |
-
selected_model = st.sidebar.selectbox("Select Model", models)
|
423 |
-
temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, (0.5))
|
424 |
-
st.sidebar.button('Reset Chat', on_click=reset_conversation) # Reset button
|
425 |
-
|
426 |
-
st.sidebar.write(f"You're now chatting with **{selected_model}**")
|
427 |
-
st.sidebar.markdown(model_info[selected_model]['description'])
|
428 |
-
st.sidebar.image(model_info[selected_model]['logo'])
|
429 |
-
|
430 |
-
st.sidebar.markdown("\*Generating the code might go slow if you are using low power resources \*")
|
431 |
-
|
432 |
-
if "prev_option" not in st.session_state:
|
433 |
-
st.session_state.prev_option = selected_model
|
434 |
-
|
435 |
-
if st.session_state.prev_option != selected_model:
|
436 |
-
st.session_state.messages = []
|
437 |
-
st.session_state.prev_option = selected_model
|
438 |
-
|
439 |
-
if "chat_state" not in st.session_state:
|
440 |
-
st.session_state.chat_state = "normal"
|
441 |
-
|
442 |
-
# Load the conversation history from the file
|
443 |
-
if "messages" not in st.session_state:
|
444 |
-
st.session_state.messages = load_conversation_history()
|
445 |
-
|
446 |
-
repo_id = model_links[selected_model]
|
447 |
-
st.subheader(f'{selected_model}')
|
448 |
-
|
449 |
-
if st.session_state.chat_state == "normal":
|
450 |
-
for message in st.session_state.messages:
|
451 |
-
with st.chat_message(message["role"]):
|
452 |
-
st.markdown(message["content"])
|
453 |
-
|
454 |
-
if prompt := st.chat_input(f"Hi I'm {selected_model}, How can I help you today?"):
|
455 |
-
custom_instruction = "Act like a Human in conversation"
|
456 |
-
with st.chat_message("user"):
|
457 |
-
st.markdown(prompt)
|
458 |
-
|
459 |
-
st.session_state.messages.append({"role": "user", "content": prompt})
|
460 |
-
conversation_history = [(message["role"], message["content"]) for message in st.session_state.messages]
|
461 |
-
|
462 |
-
formated_text = format_prompt(prompt, conversation_history, custom_instruction)
|
463 |
-
|
464 |
-
with st.chat_message("assistant"):
|
465 |
-
# Select the appropriate model based on the user's choice
|
466 |
-
if selected_model == "LegacyLift🚀":
|
467 |
-
model = LegacyLiftModel()
|
468 |
-
elif selected_model == "ModernMigrate⭐":
|
469 |
-
model = ModernMigrateModel()
|
470 |
-
elif selected_model == "RetroRecode🔄":
|
471 |
-
model = RetroRecodeModel()
|
472 |
-
else:
|
473 |
-
st.error("Invalid model selection.")
|
474 |
-
st.stop() # Stop the Streamlit app execution
|
475 |
-
|
476 |
-
response = model.generate_text(formated_text, temperature=temp_values)
|
477 |
-
st.markdown(response)
|
478 |
-
st.session_state.messages.append({"role": "assistant", "content": response})
|
479 |
-
save_conversation_history(st.session_state.messages)
|
480 |
-
|
481 |
-
elif st.session_state.chat_state == "reset":
|
482 |
-
st.session_state.chat_state = "normal"
|
483 |
-
st.experimental_rerun()
|
484 |
-
|
485 |
# --- Agent-Based Workflow Execution ---
|
486 |
def execute_workflow(workflow, prompt, context):
|
487 |
# Execute the workflow
|
@@ -524,7 +514,6 @@ if st.button("Dev Sandbox"):
|
|
524 |
context = execute_workflow(dev_sandbox_workflow, "Write a Python function to reverse a string.", context)
|
525 |
st.write(f"Workflow Output: {context}")
|
526 |
|
527 |
-
|
528 |
# --- Displaying Agent and Tool Information ---
|
529 |
st.subheader("Agent Pool")
|
530 |
for agent_name, agent in agent_pool.items():
|
@@ -587,4 +576,4 @@ image_analysis_tool = ImageAnalysisTool()
|
|
587 |
st.write(f"""Image Analysis Tool Output: {image_analysis_tool.run({'image_url': 'https://example.com/image.jpg'})}""")
|
588 |
|
589 |
question_answering_tool = QuestionAnsweringTool()
|
590 |
-
st.write(f"""Question Answering Tool Output: {question_answering_tool.run({'question': 'What is the capital of France?', 'context': 'France is a country in Western Europe. Its capital is Paris.'})}""")
|
|
|
2 |
from huggingface_hub import InferenceClient
|
3 |
import os
|
4 |
import pickle
|
5 |
+
from langchain_community.memory import ConversationBufferMemory
|
6 |
+
from langchain_community.tools import Tool
|
7 |
+
from langchain_community.agents import initialize_agent, AgentType
|
8 |
+
from langchain_community.chains import LLMChain
|
9 |
+
from langchain_community.prompts import PromptTemplate
|
10 |
+
from langchain_community.chains.question_answering import load_qa_chain
|
11 |
+
from langchain_community.document_loaders import TextLoader
|
12 |
+
from langchain_community.text_splitter import CharacterTextSplitter
|
13 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings # Use Hugging Face Embeddings
|
14 |
+
from langchain_community.vectorstores import FAISS
|
15 |
+
from langchain_community.chains import RetrievalQA
|
16 |
+
from langchain_community.chains.conversational_retrieval_qa import ConversationalRetrievalQAChain
|
17 |
+
from langchain_community.chains.summarization import load_summarization_chain
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
from langchain_community.llms import HuggingFaceHub
|
19 |
from typing import List, Dict, Any, Optional
|
20 |
|
21 |
+
st.title("Triagi - Dev-Centric Agent Clusters ☄")
|
22 |
+
|
23 |
+
# --- Model Definitions ---
|
24 |
+
class Model:
|
25 |
+
def __init__(self, name, description, model_link):
|
26 |
+
self.name = name
|
27 |
+
self.description = description
|
28 |
+
self.model_link = model_link
|
29 |
+
self.inference_client = InferenceClient(model=model_link)
|
30 |
+
|
31 |
+
def generate_text(self, prompt, temperature=0.5, max_new_tokens=4096):
|
32 |
+
try:
|
33 |
+
output = self.inference_client.text_generation(
|
34 |
+
prompt,
|
35 |
+
temperature=temperature,
|
36 |
+
max_new_tokens=max_new_tokens,
|
37 |
+
stream=True
|
38 |
+
)
|
39 |
+
response = "".join(output)
|
40 |
+
except ValueError as e:
|
41 |
+
if "Input validation error" in str(e):
|
42 |
+
return "Error: The input prompt is too long. Please try a shorter prompt."
|
43 |
+
else:
|
44 |
+
return f"An error occurred: {e}"
|
45 |
+
return response
|
46 |
+
|
47 |
+
# --- Model Examples ---
|
48 |
+
class FrontendForgeModel(Model):
|
49 |
+
def __init__(self):
|
50 |
+
super().__init__("FrontendForge🚀", "The FrontendForge model is a Large Language Model (LLM) that's able to handle frontend development tasks such as UI design and user interaction logic.", "mistralai/Mistral-7B-Instruct-v0.2")
|
51 |
+
|
52 |
+
class BackendBuilderModel(Model):
|
53 |
+
def __init__(self):
|
54 |
+
super().__init__("BackendBuilder⭐", "The BackendBuilder model is a Large Language Model (LLM) that's specialized in backend development tasks including API creation, database management, and server-side logic.", "mistralai/Mixtral-8x7B-Instruct-v0.1")
|
55 |
+
|
56 |
+
class IntegratorModel(Model):
|
57 |
+
def __init__(self):
|
58 |
+
super().__init__("Integrator🔄", "The Integrator model is a Large Language Model (LLM) that's best suited for integrating frontend and backend components, handling business logic, and ensuring seamless communication between different parts of the application.", "microsoft/Phi-3-mini-4k-instruct")
|
59 |
+
|
60 |
+
# --- Streamlit Interface ---
|
61 |
+
model_links = {
|
62 |
+
"FrontendForge🚀": "mistralai/Mistral-7B-Instruct-v0.2",
|
63 |
+
"BackendBuilder⭐": "mistralai/Mixtral-8x7B-Instruct-v0.1",
|
64 |
+
"Integrator🔄": "microsoft/Phi-3-mini-4k-instruct"
|
65 |
+
}
|
66 |
+
|
67 |
+
model_info = {
|
68 |
+
"FrontendForge🚀": {
|
69 |
+
'description': "The FrontendForge model is a Large Language Model (LLM) that's able to handle frontend development tasks such as UI design and user interaction logic.",
|
70 |
+
'logo': './11.jpg'
|
71 |
+
},
|
72 |
+
"BackendBuilder⭐": {
|
73 |
+
'description': "The BackendBuilder model is a Large Language Model (LLM) that's specialized in backend development tasks including API creation, database management, and server-side logic.",
|
74 |
+
'logo': './2.jpg'
|
75 |
+
},
|
76 |
+
"Integrator🔄": {
|
77 |
+
'description': "The Integrator model is a Large Language Model (LLM) that's best suited for integrating frontend and backend components, handling business logic, and ensuring seamless communication between different parts of the application.",
|
78 |
+
'logo': './3.jpg'
|
79 |
+
},
|
80 |
+
}
|
81 |
+
|
82 |
+
def format_prompt(message, conversation_history, custom_instructions=None):
|
83 |
+
prompt = ""
|
84 |
+
if custom_instructions:
|
85 |
+
prompt += "[INST] {} [/INST]\n".format(custom_instructions)
|
86 |
+
|
87 |
+
# Add conversation history to the prompt
|
88 |
+
prompt += "[CONV_HISTORY]\n"
|
89 |
+
for role, content in conversation_history:
|
90 |
+
prompt += "{}: {}\n".format(role.upper(), content)
|
91 |
+
prompt += "[/CONV_HISTORY]\n"
|
92 |
+
|
93 |
+
# Add the current message
|
94 |
+
prompt += "[INST] {} [/INST]\n".format(message)
|
95 |
+
|
96 |
+
# Add the response format
|
97 |
+
prompt += "[RESPONSE]\n"
|
98 |
+
|
99 |
+
return prompt
|
100 |
+
|
101 |
+
def reset_conversation():
|
102 |
+
'''
|
103 |
+
Resets Conversation
|
104 |
+
'''
|
105 |
+
st.session_state.conversation = []
|
106 |
+
st.session_state.messages = []
|
107 |
+
st.session_state.chat_state = "reset"
|
108 |
+
|
109 |
+
def load_conversation_history():
|
110 |
+
history_file = "conversation_history.pickle"
|
111 |
+
if os.path.exists(history_file):
|
112 |
+
with open(history_file, "rb") as f:
|
113 |
+
conversation_history = pickle.load(f)
|
114 |
+
else:
|
115 |
+
conversation_history = []
|
116 |
+
return conversation_history
|
117 |
+
|
118 |
+
def save_conversation_history(conversation_history):
|
119 |
+
history_file = "conversation_history.pickle"
|
120 |
+
with open(history_file, "wb") as f:
|
121 |
+
pickle.dump(conversation_history, f)
|
122 |
+
|
123 |
+
models = [key for key in model_links.keys()]
|
124 |
+
selected_model = st.sidebar.selectbox("Select Model", models)
|
125 |
+
temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, (0.5))
|
126 |
+
st.sidebar.button('Reset Chat', on_click=reset_conversation) # Reset button
|
127 |
+
|
128 |
+
st.sidebar.write(f"You're now chatting with **{selected_model}**")
|
129 |
+
st.sidebar.markdown(model_info[selected_model]['description'])
|
130 |
+
st.sidebar.image(model_info[selected_model]['logo'])
|
131 |
+
|
132 |
+
st.sidebar.markdown("*Generating the code might go slow if you are using low power resources*")
|
133 |
+
|
134 |
+
if "prev_option" not in st.session_state:
|
135 |
+
st.session_state.prev_option = selected_model
|
136 |
+
|
137 |
+
if st.session_state.prev_option != selected_model:
|
138 |
+
st.session_state.messages = []
|
139 |
+
st.session_state.prev_option = selected_model
|
140 |
+
|
141 |
+
if "chat_state" not in st.session_state:
|
142 |
+
st.session_state.chat_state = "normal"
|
143 |
+
|
144 |
+
# Load the conversation history from the file
|
145 |
+
if "messages" not in st.session_state:
|
146 |
+
st.session_state.messages = load_conversation_history()
|
147 |
+
|
148 |
+
repo_id = model_links[selected_model]
|
149 |
+
st.subheader(f'{selected_model}')
|
150 |
+
|
151 |
+
if st.session_state.chat_state == "normal":
|
152 |
+
for message in st.session_state.messages:
|
153 |
+
with st.chat_message(message["role"]):
|
154 |
+
st.markdown(message["content"])
|
155 |
+
|
156 |
+
if prompt := st.chat_input(f"Hi I'm {selected_model}, How can I help you today?"):
|
157 |
+
custom_instruction = "Act like a Human in conversation"
|
158 |
+
with st.chat_message("user"):
|
159 |
+
st.markdown(prompt)
|
160 |
+
|
161 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
162 |
+
conversation_history = [(message["role"], message["content"]) for message in st.session_state.messages]
|
163 |
+
|
164 |
+
formated_text = format_prompt(prompt, conversation_history, custom_instruction)
|
165 |
+
|
166 |
+
with st.chat_message("assistant"):
|
167 |
+
# Select the appropriate model based on the user's choice
|
168 |
+
if selected_model == "FrontendForge🚀":
|
169 |
+
model = FrontendForgeModel()
|
170 |
+
elif selected_model == "BackendBuilder⭐":
|
171 |
+
model = BackendBuilderModel()
|
172 |
+
elif selected_model == "Integrator🔄":
|
173 |
+
model = IntegratorModel()
|
174 |
+
else:
|
175 |
+
st.error("Invalid model selection.")
|
176 |
+
st.stop() # Stop the Streamlit app execution
|
177 |
+
|
178 |
+
response = model.generate_text(formated_text, temperature=temp_values)
|
179 |
+
st.markdown(response)
|
180 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
181 |
+
save_conversation_history(st.session_state.messages)
|
182 |
+
|
183 |
+
elif st.session_state.chat_state == "reset":
|
184 |
+
st.session_state.chat_state = "normal"
|
185 |
+
st.experimental_rerun()
|
186 |
|
187 |
# --- Agent Definitions ---
|
188 |
class Agent:
|
|
|
206 |
return action
|
207 |
|
208 |
def observe(self, observation):
|
209 |
+
# Process observation based on the agent's capabilities and the nature of the observation
|
210 |
+
self.memory.append(observation)
|
|
|
211 |
|
212 |
def learn(self, data):
|
213 |
+
# Implement learning logic based on the agent's capabilities and the type of data
|
|
|
214 |
pass
|
215 |
|
216 |
def __str__(self):
|
|
|
223 |
self.description = description
|
224 |
|
225 |
def run(self, arguments):
|
226 |
+
# Implement tool execution logic based on the specific tool's functionality and the provided arguments
|
|
|
|
|
227 |
return {"output": "Tool Output"}
|
228 |
|
229 |
# --- Tool Examples ---
|
|
|
428 |
# --- Agent Pool ---
|
429 |
agent_pool = {
|
430 |
"IdeaIntake": Agent("IdeaIntake", "Idea Intake", [DataRetrievalTool(), CodeGenerationTool(), TextGenerationTool(), QuestionAnsweringTool()], knowledge_base=""),
|
431 |
+
"CodeBuilder": Agent("CodeBuilder", "Code Builder", [CodeGenerationTool(), CodeDebuggingTool(), CodeOptimizationTool(), CodeExecutionTool(), CodeSummarizationTool(), CodeTranslationTool(), CodeDocumentationTool()], knowledge_base=""),
|
432 |
+
"ImageCreator": Agent("ImageCreator", "Image Creator", [ImageGenerationTool(), ImageEditingTool(), ImageAnalysisTool()], knowledge_base=""),
|
433 |
}
|
434 |
|
435 |
# --- Workflow Definitions ---
|
|
|
472 |
def __init__(self):
|
473 |
super().__init__("Dev Sandbox", [agent_pool["IdeaIntake"], agent_pool["CodeBuilder"]], "Experiment with code", "A workflow for experimenting with code.")
|
474 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
475 |
# --- Agent-Based Workflow Execution ---
|
476 |
def execute_workflow(workflow, prompt, context):
|
477 |
# Execute the workflow
|
|
|
514 |
context = execute_workflow(dev_sandbox_workflow, "Write a Python function to reverse a string.", context)
|
515 |
st.write(f"Workflow Output: {context}")
|
516 |
|
|
|
517 |
# --- Displaying Agent and Tool Information ---
|
518 |
st.subheader("Agent Pool")
|
519 |
for agent_name, agent in agent_pool.items():
|
|
|
576 |
st.write(f"""Image Analysis Tool Output: {image_analysis_tool.run({'image_url': 'https://example.com/image.jpg'})}""")
|
577 |
|
578 |
question_answering_tool = QuestionAnsweringTool()
|
579 |
+
st.write(f"""Question Answering Tool Output: {question_answering_tool.run({'question': 'What is the capital of France?', 'context': 'France is a country in Western Europe. Its capital is Paris.'})}""")
|