sainathBelagavi commited on
Commit
53746df
·
verified ·
1 Parent(s): 5d7132b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -5
app.py CHANGED
@@ -29,7 +29,7 @@ model_info = {
29
  },
30
  }
31
 
32
- def format_promt(message, conversation_history, custom_instructions=None):
33
  prompt = ""
34
  if custom_instructions:
35
  prompt += f"\[INST\] {custom_instructions} \[/INST\]"
@@ -104,7 +104,7 @@ if prompt := st.chat_input(f"Hi I'm {selected_model}, How can I help you today?"
104
  st.session_state.messages.append({"role": "user", "content": prompt})
105
  conversation_history = [(message["role"], message["content"]) for message in st.session_state.messages]
106
 
107
- formated_text = format_promt(prompt, conversation_history, custom_instruction)
108
 
109
  max_tokens = {
110
  "LegacyLift🚀": 32000,
@@ -113,14 +113,18 @@ if prompt := st.chat_input(f"Hi I'm {selected_model}, How can I help you today?"
113
  }
114
 
115
  # Calculate available tokens for new content
116
- input_tokens = len(formated_text.split())
117
- max_new_tokens = max(0, max_tokens[selected_model] - input_tokens)
 
 
 
 
118
 
119
  with st.chat_message("assistant"):
120
  client = InferenceClient(
121
  model=model_links[selected_model], )
122
  output = client.text_generation(
123
- formated_text,
124
  temperature=temp_values, # 0.5
125
  max_new_tokens=max_new_tokens,
126
  stream=True
 
29
  },
30
  }
31
 
32
+ def format_prompt(message, conversation_history, custom_instructions=None):
33
  prompt = ""
34
  if custom_instructions:
35
  prompt += f"\[INST\] {custom_instructions} \[/INST\]"
 
104
  st.session_state.messages.append({"role": "user", "content": prompt})
105
  conversation_history = [(message["role"], message["content"]) for message in st.session_state.messages]
106
 
107
+ formatted_text = format_prompt(prompt, conversation_history, custom_instruction)
108
 
109
  max_tokens = {
110
  "LegacyLift🚀": 32000,
 
113
  }
114
 
115
  # Calculate available tokens for new content
116
+ input_tokens = len(formatted_text.split())
117
+ max_new_tokens = max_tokens[selected_model] - input_tokens
118
+
119
+ # Ensure max_new_tokens is within the model's limit
120
+ if selected_model == "RetroRecode🔄":
121
+ max_new_tokens = min(max_new_tokens, 3000)
122
 
123
  with st.chat_message("assistant"):
124
  client = InferenceClient(
125
  model=model_links[selected_model], )
126
  output = client.text_generation(
127
+ formatted_text,
128
  temperature=temp_values, # 0.5
129
  max_new_tokens=max_new_tokens,
130
  stream=True