acecalisto3 commited on
Commit
befa211
·
verified ·
1 Parent(s): 63302a2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +92 -550
app.py CHANGED
@@ -1,579 +1,121 @@
1
  import streamlit as st
2
- from huggingface_hub import InferenceClient
3
- import os
4
- import pickle
5
- from langchain.memory import ConversationBufferMemory
6
- from langchain_community.tools import Tool
7
- from langchain_community.agents import initialize_agent, AgentType
8
- from langchain_community.chains import LLMChain
9
- from langchain_community.prompts import PromptTemplate
10
- from langchain_community.chains.question_answering import load_qa_chain
11
- from langchain_community.document_loaders import TextLoader
12
- from langchain_community.text_splitter import CharacterTextSplitter
13
- from langchain_community.embeddings import HuggingFaceEmbeddings # Use Hugging Face Embeddings
14
- from langchain_community.vectorstores import FAISS
15
- from langchain_community.chains import RetrievalQA
16
- from langchain_community.chains.conversational_retrieval_qa import ConversationalRetrievalQAChain
17
- from langchain_community.chains.summarization import load_summarization_chain
18
  from langchain_community.llms import HuggingFaceHub
 
 
19
  from typing import List, Dict, Any, Optional
20
 
21
- st.title("Triagi - Dev-Centric Agent Clusters ☄")
22
 
23
- # --- Model Definitions ---
24
- class Model:
25
- def __init__(self, name, description, model_link):
26
- self.name = name
27
- self.description = description
28
- self.model_link = model_link
29
- self.inference_client = InferenceClient(model=model_link)
30
-
31
- def generate_text(self, prompt, temperature=0.5, max_new_tokens=4096):
32
- try:
33
- output = self.inference_client.text_generation(
34
- prompt,
35
- temperature=temperature,
36
- max_new_tokens=max_new_tokens,
37
- stream=True
38
- )
39
- response = "".join(output)
40
- except ValueError as e:
41
- if "Input validation error" in str(e):
42
- return "Error: The input prompt is too long. Please try a shorter prompt."
43
- else:
44
- return f"An error occurred: {e}"
45
- return response
46
-
47
- # --- Model Examples ---
48
- class FrontendForgeModel(Model):
49
- def __init__(self):
50
- super().__init__("FrontendForge🚀", "The FrontendForge model is a Large Language Model (LLM) that's able to handle frontend development tasks such as UI design and user interaction logic.", "mistralai/Mistral-7B-Instruct-v0.2")
51
-
52
- class BackendBuilderModel(Model):
53
- def __init__(self):
54
- super().__init__("BackendBuilder⭐", "The BackendBuilder model is a Large Language Model (LLM) that's specialized in backend development tasks including API creation, database management, and server-side logic.", "mistralai/Mixtral-8x7B-Instruct-v0.1")
55
-
56
- class IntegratorModel(Model):
57
- def __init__(self):
58
- super().__init__("Integrator🔄", "The Integrator model is a Large Language Model (LLM) that's best suited for integrating frontend and backend components, handling business logic, and ensuring seamless communication between different parts of the application.", "microsoft/Phi-3-mini-4k-instruct")
59
-
60
- # --- Streamlit Interface ---
61
- model_links = {
62
- "FrontendForge🚀": "mistralai/Mistral-7B-Instruct-v0.2",
63
- "BackendBuilder⭐": "mistralai/Mixtral-8x7B-Instruct-v0.1",
64
- "Integrator🔄": "microsoft/Phi-3-mini-4k-instruct"
65
- }
66
-
67
- model_info = {
68
- "FrontendForge🚀": {
69
- 'description': "The FrontendForge model is a Large Language Model (LLM) that's able to handle frontend development tasks such as UI design and user interaction logic.",
70
- 'logo': './11.jpg'
71
- },
72
- "BackendBuilder⭐": {
73
- 'description': "The BackendBuilder model is a Large Language Model (LLM) that's specialized in backend development tasks including API creation, database management, and server-side logic.",
74
- 'logo': './2.jpg'
75
- },
76
- "Integrator🔄": {
77
- 'description': "The Integrator model is a Large Language Model (LLM) that's best suited for integrating frontend and backend components, handling business logic, and ensuring seamless communication between different parts of the application.",
78
- 'logo': './3.jpg'
79
- },
80
- }
81
-
82
- def format_prompt(message, conversation_history, custom_instructions=None):
83
- prompt = ""
84
- if custom_instructions:
85
- prompt += "[INST] {} [/INST]\n".format(custom_instructions)
86
-
87
- # Add conversation history to the prompt
88
- prompt += "[CONV_HISTORY]\n"
89
- for role, content in conversation_history:
90
- prompt += "{}: {}\n".format(role.upper(), content)
91
- prompt += "[/CONV_HISTORY]\n"
92
-
93
- # Add the current message
94
- prompt += "[INST] {} [/INST]\n".format(message)
95
-
96
- # Add the response format
97
- prompt += "[RESPONSE]\n"
98
-
99
- return prompt
100
-
101
- def reset_conversation():
102
- '''
103
- Resets Conversation
104
- '''
105
- st.session_state.conversation = []
106
- st.session_state.messages = []
107
- st.session_state.chat_state = "reset"
108
-
109
- def load_conversation_history():
110
- history_file = "conversation_history.pickle"
111
- if os.path.exists(history_file):
112
- with open(history_file, "rb") as f:
113
- conversation_history = pickle.load(f)
114
- else:
115
- conversation_history = []
116
- return conversation_history
117
-
118
- def save_conversation_history(conversation_history):
119
- history_file = "conversation_history.pickle"
120
- with open(history_file, "wb") as f:
121
- pickle.dump(conversation_history, f)
122
-
123
- models = [key for key in model_links.keys()]
124
- selected_model = st.sidebar.selectbox("Select Model", models)
125
- temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, (0.5))
126
- st.sidebar.button('Reset Chat', on_click=reset_conversation) # Reset button
127
-
128
- st.sidebar.write(f"You're now chatting with **{selected_model}**")
129
- st.sidebar.markdown(model_info[selected_model]['description'])
130
- st.sidebar.image(model_info[selected_model]['logo'])
131
-
132
- st.sidebar.markdown("*Generating the code might go slow if you are using low power resources*")
133
-
134
- if "prev_option" not in st.session_state:
135
- st.session_state.prev_option = selected_model
136
-
137
- if st.session_state.prev_option != selected_model:
138
- st.session_state.messages = []
139
- st.session_state.prev_option = selected_model
140
-
141
- if "chat_state" not in st.session_state:
142
- st.session_state.chat_state = "normal"
143
-
144
- # Load the conversation history from the file
145
- if "messages" not in st.session_state:
146
- st.session_state.messages = load_conversation_history()
147
-
148
- repo_id = model_links[selected_model]
149
- st.subheader(f'{selected_model}')
150
-
151
- if st.session_state.chat_state == "normal":
152
- for message in st.session_state.messages:
153
- with st.chat_message(message["role"]):
154
- st.markdown(message["content"])
155
-
156
- if prompt := st.chat_input(f"Hi I'm {selected_model}, How can I help you today?"):
157
- custom_instruction = "Act like a Human in conversation"
158
- with st.chat_message("user"):
159
- st.markdown(prompt)
160
-
161
- st.session_state.messages.append({"role": "user", "content": prompt})
162
- conversation_history = [(message["role"], message["content"]) for message in st.session_state.messages]
163
-
164
- formated_text = format_prompt(prompt, conversation_history, custom_instruction)
165
-
166
- with st.chat_message("assistant"):
167
- # Select the appropriate model based on the user's choice
168
- if selected_model == "FrontendForge🚀":
169
- model = FrontendForgeModel()
170
- elif selected_model == "BackendBuilder⭐":
171
- model = BackendBuilderModel()
172
- elif selected_model == "Integrator🔄":
173
- model = IntegratorModel()
174
- else:
175
- st.error("Invalid model selection.")
176
- st.stop() # Stop the Streamlit app execution
177
-
178
- response = model.generate_text(formated_text, temperature=temp_values)
179
- st.markdown(response)
180
- st.session_state.messages.append({"role": "assistant", "content": response})
181
- save_conversation_history(st.session_state.messages)
182
-
183
- elif st.session_state.chat_state == "reset":
184
- st.session_state.chat_state = "normal"
185
- st.experimental_rerun()
186
-
187
- # --- Agent Definitions ---
188
- class Agent:
189
  def __init__(self, name, role, tools, knowledge_base=None):
190
- self.name = name
191
- self.role = role
192
- self.tools = tools
193
- self.knowledge_base = knowledge_base
194
- self.memory = []
195
- self.llm = HuggingFaceHub(repo_id="google/flan-t5-xl", model_kwargs={"temperature": 0.5}) # Use a language model for action selection
196
- self.agent = ToolAgent(
197
- llm=self.llm,
198
- tools=self.tools,
199
- agent_type=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
200
- verbose=True
201
  )
202
-
203
- def act(self, prompt, context):
204
- self.memory.append((prompt, context))
205
- action = self.agent.run(prompt, context)
206
- return action
207
-
208
- def observe(self, observation):
209
- # Process observation based on the agent's capabilities and the nature of the observation
210
- self.memory.append(observation)
211
-
212
- def learn(self, data):
213
- # Implement learning logic based on the agent's capabilities and the type of data
214
- pass
215
-
216
- def __str__(self):
217
- return f"Agent: {self.name} (Role: {self.role})"
218
-
219
- # --- Tool Definitions ---
220
- class Tool:
221
- def __init__(self, name, description):
222
- self.name = name
223
- self.description = description
224
-
225
- def run(self, arguments):
226
- # Implement tool execution logic based on the specific tool's functionality and the provided arguments
227
- return {"output": "Tool Output"}
228
-
229
- # --- Tool Examples ---
230
- class CodeGenerationTool(Tool):
231
- def __init__(self):
232
- super().__init__("Code Generation", "Generates code snippets in various languages.")
233
- self.llm = HuggingFaceHub(repo_id="google/flan-t5-xl", model_kwargs={"temperature": 0.5})
234
- self.prompt_template = PromptTemplate(
235
- input_variables=["language", "code_description"],
236
- template="Generate {language} code for: {code_description}"
237
  )
238
- self.chain = LLMChain(llm=self.llm, prompt=self.prompt_template)
239
-
240
- def run(self, arguments):
241
- language = arguments.get("language", "python")
242
- code_description = arguments.get("code_description", "print('Hello, World!')")
243
- code = self.chain.run(language=language, code_description=code_description)
244
- return {"output": code}
245
 
246
- class DataRetrievalTool(Tool):
247
  def __init__(self):
248
- super().__init__("Data Retrieval", "Accesses data from APIs, databases, or files.")
249
- self.llm = HuggingFaceHub(repo_id="google/flan-t5-xl", model_kwargs={"temperature": 0.5})
250
- self.prompt_template = PromptTemplate(
251
- input_variables=["data_source", "data_query"],
252
- template="Retrieve data from {data_source} based on: {data_query}"
253
- )
254
- self.chain = LLMChain(llm=self.llm, prompt=self.prompt_template)
255
-
256
- def run(self, arguments):
257
- data_source = arguments.get("data_source", "https://example.com/data")
258
- data_query = arguments.get("data_query", "some information")
259
- data = self.chain.run(data_source=data_source, data_query=data_query)
260
- return {"output": data}
261
 
262
- class TextGenerationTool(Tool):
263
  def __init__(self):
264
- super().__init__("Text Generation", "Generates human-like text based on a given prompt.")
265
- self.llm = HuggingFaceHub(repo_id="google/flan-t5-xl", model_kwargs={"temperature": 0.5})
266
- self.prompt_template = PromptTemplate(
267
- input_variables=["text_prompt"],
268
- template="Generate text based on: {text_prompt}"
269
- )
270
- self.chain = LLMChain(llm=self.llm, prompt=self.prompt_template)
271
-
272
- def run(self, arguments):
273
- text_prompt = arguments.get("text_prompt", "Write a short story about a cat.")
274
- text = self.chain.run(text_prompt=text_prompt)
275
- return {"output": text}
276
 
277
- class CodeExecutionTool(Tool):
278
  def __init__(self):
279
- super().__init__("Code Execution", "Runs code snippets in various languages.")
280
 
281
- def run(self, arguments):
282
- code = arguments.get("code", "print('Hello, World!')")
283
- try:
284
- exec(code)
285
- return {"output": f"Code executed: {code}"}
286
- except Exception as e:
287
- return {"output": f"Error executing code: {e}"}
288
-
289
- class CodeDebuggingTool(Tool):
290
  def __init__(self):
291
- super().__init__("Code Debugging", "Identifies and resolves errors in code snippets.")
292
- self.llm = HuggingFaceHub(repo_id="google/flan-t5-xl", model_kwargs={"temperature": 0.5})
293
- self.prompt_template = PromptTemplate(
294
- input_variables=["code", "error_message"],
295
- template="Debug the following code:\n{code}\n\nError message: {error_message}"
296
- )
297
- self.chain = LLMChain(llm=self.llm, prompt=self.prompt_template)
298
-
299
- def run(self, arguments):
300
- code = arguments.get("code", "print('Hello, World!')")
301
- try:
302
- exec(code)
303
- return {"output": f"Code debugged: {code}"}
304
- except Exception as e:
305
- error_message = str(e)
306
- debugged_code = self.chain.run(code=code, error_message=error_message)
307
- return {"output": f"Debugged code:\n{debugged_code}"}
308
 
309
- class CodeSummarizationTool(Tool):
310
  def __init__(self):
311
- super().__init__("Code Summarization", "Provides a concise overview of the functionality of a code snippet.")
312
- self.llm = HuggingFaceHub(repo_id="google/flan-t5-xl", model_kwargs={"temperature": 0.5})
313
- self.prompt_template = PromptTemplate(
314
- input_variables=["code"],
315
- template="Summarize the functionality of the following code:\n{code}"
316
- )
317
- self.chain = LLMChain(llm=self.llm, prompt=self.prompt_template)
318
-
319
- def run(self, arguments):
320
- code = arguments.get("code", "print('Hello, World!')")
321
- summary = self.chain.run(code=code)
322
- return {"output": f"Code summary: {summary}"}
323
 
324
- class CodeTranslationTool(Tool):
325
  def __init__(self):
326
- super().__init__("Code Translation", "Translates code snippets between different programming languages.")
327
- self.llm = HuggingFaceHub(repo_id="google/flan-t5-xl", model_kwargs={"temperature": 0.5})
328
- self.prompt_template = PromptTemplate(
329
- input_variables=["code", "target_language"],
330
- template="Translate the following code to {target_language}:\n{code}"
331
- )
332
- self.chain = LLMChain(llm=self.llm, prompt=self.prompt_template)
333
 
334
- def run(self, arguments):
335
- code = arguments.get("code", "print('Hello, World!')")
336
- target_language = arguments.get("target_language", "javascript")
337
- translated_code = self.chain.run(code=code, target_language=target_language)
338
- return {"output": f"Translated code:\n{translated_code}"}
339
-
340
- class CodeOptimizationTool(Tool):
341
  def __init__(self):
342
- super().__init__("Code Optimization", "Optimizes code for performance and efficiency.")
343
- self.llm = HuggingFaceHub(repo_id="google/flan-t5-xl", model_kwargs={"temperature": 0.5})
344
- self.prompt_template = PromptTemplate(
345
- input_variables=["code"],
346
- template="Optimize the following code for performance and efficiency:\n{code}"
347
- )
348
- self.chain = LLMChain(llm=self.llm, prompt=self.prompt_template)
349
-
350
- def run(self, arguments):
351
- code = arguments.get("code", "print('Hello, World!')")
352
- optimized_code = self.chain.run(code=code)
353
- return {"output": f"Optimized code:\n{optimized_code}"}
354
 
355
- class CodeDocumentationTool(Tool):
 
356
  def __init__(self):
357
- super().__init__("Code Documentation", "Generates documentation for code snippets.")
358
- self.llm = HuggingFaceHub(repo_id="google/flan-t5-xl", model_kwargs={"temperature": 0.5})
359
- self.prompt_template = PromptTemplate(
360
- input_variables=["code"],
361
- template="Generate documentation for the following code:\n{code}"
362
- )
363
- self.chain = LLMChain(llm=self.llm, prompt=self.prompt_template)
364
-
365
- def run(self, arguments):
366
- code = arguments.get("code", "print('Hello, World!')")
367
- documentation = self.chain.run(code=code)
368
- return {"output": f"Code documentation:\n{documentation}"}
369
-
370
- class ImageGenerationTool(Tool):
371
- def __init__(self):
372
- super().__init__("Image Generation", "Generates images based on text descriptions.")
373
- self.llm = HuggingFaceHub(repo_id="google/flan-t5-xl", model_kwargs={"temperature": 0.5})
374
- self.prompt_template = PromptTemplate(
375
- input_variables=["description"],
376
- template="Generate an image based on the description: {description}"
377
- )
378
- self.chain = LLMChain(llm=self.llm, prompt=self.prompt_template)
379
-
380
- def run(self, arguments):
381
- description = arguments.get("description", "A cat sitting on a couch")
382
- image_url = self.chain.run(description=description)
383
- return {"output": f"Generated image: {image_url}"}
384
-
385
- class ImageEditingTool(Tool):
386
- def __init__(self):
387
- super().__init__("Image Editing", "Modifying existing images.")
388
- self.llm = HuggingFaceHub(repo_id="google/flan-t5-xl", model_kwargs={"temperature": 0.5})
389
- self.prompt_template = PromptTemplate(
390
- input_variables=["image_url", "editing_instructions"],
391
- template="Edit the image at {image_url} according to the instructions: {editing_instructions}"
392
- )
393
- self.chain = LLMChain(llm=self.llm, prompt=self.prompt_template)
394
-
395
- def run(self, arguments):
396
- image_url = arguments.get("image_url", "https://example.com/image.jpg")
397
- editing_instructions = arguments.get("editing_instructions", "Make the cat smile")
398
- edited_image_url = self.chain.run(image_url=image_url, editing_instructions=editing_instructions)
399
- return {"output": f"Edited image: {edited_image_url}"}
400
-
401
- class ImageAnalysisTool(Tool):
402
- def __init__(self):
403
- super().__init__("Image Analysis", "Extracting information from images, such as objects, scenes, and emotions.")
404
- self.llm = HuggingFaceHub(repo_id="google/flan-t5-xl", model_kwargs={"temperature": 0.5})
405
- self.prompt_template = PromptTemplate(
406
- input_variables=["image_url"],
407
- template="Analyze the image at {image_url} and provide information about objects, scenes, and emotions."
408
- )
409
- self.chain = LLMChain(llm=self.llm, prompt=self.prompt_template)
410
 
411
- def run(self, arguments):
412
- image_url = arguments.get("image_url", "https://example.com/image.jpg")
413
- analysis_results = self.chain.run(image_url=image_url)
414
- return {"output": f"Image analysis results:\n{analysis_results}"}
415
-
416
- class QuestionAnsweringTool(Tool):
417
- def __init__(self):
418
- super().__init__("Question Answering", "Answers questions based on provided context.")
419
- self.llm = HuggingFaceHub(repo_id="google/flan-t5-xl", model_kwargs={"temperature": 0.5})
420
- self.qa_chain = load_qa_chain(self.llm) # Use a question answering chain
421
-
422
- def run(self, arguments):
423
- question = arguments.get("question", "What is the capital of France?")
424
- context = arguments.get("context", "France is a country in Western Europe. Its capital is Paris.")
425
- answer = self.qa_chain.run(question=question, context=context)
426
- return {"output": answer}
427
-
428
- # --- Agent Pool ---
429
- agent_pool = {
430
- "IdeaIntake": Agent("IdeaIntake", "Idea Intake", [DataRetrievalTool(), CodeGenerationTool(), TextGenerationTool(), QuestionAnsweringTool()], knowledge_base=""),
431
- "CodeBuilder": Agent("CodeBuilder", "Code Builder", [CodeGenerationTool(), CodeDebuggingTool(), CodeOptimizationTool(), CodeExecutionTool(), CodeSummarizationTool(), CodeTranslationTool(), CodeDocumentationTool()], knowledge_base=""),
432
- "ImageCreator": Agent("ImageCreator", "Image Creator", [ImageGenerationTool(), ImageEditingTool(), ImageAnalysisTool()], knowledge_base=""),
433
- }
434
-
435
- # --- Workflow Definitions ---
436
- class Workflow:
437
- def __init__(self, name, agents, task, description):
438
- self.name = name
439
- self.agents = agents
440
- self.task = task
441
- self.description = description
442
-
443
- def run(self, prompt, context):
444
  for agent in self.agents:
445
- action = agent.act(prompt, context)
446
- if action.get("tool"):
447
- tool = next((t for t in agent.tools if t.name == action["tool"]), None)
448
- if tool:
449
- output = tool.run(action["arguments"])
450
- context.update(output)
451
- agent.observe(output)
452
- return context
453
-
454
- # --- Workflow Examples ---
455
- class AppBuildWorkflow(Workflow):
456
- def __init__(self):
457
- super().__init__("App Build", [agent_pool["IdeaIntake"], agent_pool["CodeBuilder"]], "Build a mobile application", "A workflow for building a mobile application.")
458
-
459
- class WebsiteBuildWorkflow(Workflow):
460
- def __init__(self):
461
- super().__init__("Website Build", [agent_pool["IdeaIntake"], agent_pool["CodeBuilder"]], "Build a website", "A workflow for building a website.")
462
-
463
- class GameBuildWorkflow(Workflow):
464
- def __init__(self):
465
- super().__init__("Game Build", [agent_pool["IdeaIntake"], agent_pool["CodeBuilder"]], "Build a game", "A workflow for building a game.")
466
-
467
- class PluginBuildWorkflow(Workflow):
468
- def __init__(self):
469
- super().__init__("Plugin Build", [agent_pool["IdeaIntake"], agent_pool["CodeBuilder"]], "Build a plugin", "A workflow for building a plugin.")
470
-
471
- class DevSandboxWorkflow(Workflow):
472
- def __init__(self):
473
- super().__init__("Dev Sandbox", [agent_pool["IdeaIntake"], agent_pool["CodeBuilder"]], "Experiment with code", "A workflow for experimenting with code.")
474
-
475
- # --- Agent-Based Workflow Execution ---
476
- def execute_workflow(workflow, prompt, context):
477
- # Execute the workflow
478
- context = workflow.run(prompt, context)
479
- # Display the output
480
- for agent in workflow.agents:
481
- st.write(f"{agent}: {agent.memory}")
482
- for action in agent.memory:
483
- st.write(f" Action: {action}")
484
- return context
485
-
486
- # --- Example Usage ---
487
- if st.button("Build an App"):
488
- app_build_workflow = AppBuildWorkflow()
489
- context = {"task": "Build a mobile application"}
490
- context = execute_workflow(app_build_workflow, "Build a mobile app for ordering food.", context)
491
- st.write(f"Workflow Output: {context}")
492
-
493
- if st.button("Build a Website"):
494
- website_build_workflow = WebsiteBuildWorkflow()
495
- context = {"task": "Build a website"}
496
- context = execute_workflow(website_build_workflow, "Build a website for a restaurant.", context)
497
- st.write(f"Workflow Output: {context}")
498
-
499
- if st.button("Build a Game"):
500
- game_build_workflow = GameBuildWorkflow()
501
- context = {"task": "Build a game"}
502
- context = execute_workflow(game_build_workflow, "Build a simple 2D platformer game.", context)
503
- st.write(f"Workflow Output: {context}")
504
-
505
- if st.button("Build a Plugin"):
506
- plugin_build_workflow = PluginBuildWorkflow()
507
- context = {"task": "Build a plugin"}
508
- context = execute_workflow(plugin_build_workflow, "Build a plugin for a text editor that adds a new syntax highlighting theme.", context)
509
- st.write(f"Workflow Output: {context}")
510
-
511
- if st.button("Dev Sandbox"):
512
- dev_sandbox_workflow = DevSandboxWorkflow()
513
- context = {"task": "Experiment with code"}
514
- context = execute_workflow(dev_sandbox_workflow, "Write a Python function to reverse a string.", context)
515
- st.write(f"Workflow Output: {context}")
516
-
517
- # --- Displaying Agent and Tool Information ---
518
- st.subheader("Agent Pool")
519
- for agent_name, agent in agent_pool.items():
520
- st.write(f"**{agent_name}**")
521
- st.write(f" Role: {agent.role}")
522
- st.write(f" Tools: {', '.join([tool.name for tool in agent.tools])}")
523
-
524
- st.subheader("Workflows")
525
- st.write("**App Build**")
526
- st.write(f""" Description: {AppBuildWorkflow().description}""")
527
- st.write("**Website Build**")
528
- st.write(f""" Description: {WebsiteBuildWorkflow().description}""")
529
- st.write("**Game Build**")
530
- st.write(f""" Description: {GameBuildWorkflow().description}""")
531
- st.write("**Plugin Build**")
532
- st.write(f""" Description: {PluginBuildWorkflow().description}""")
533
- st.write("**Dev Sandbox**")
534
- st.write(f""" Description: {DevSandboxWorkflow().description}""")
535
-
536
- # --- Displaying Tool Definitions ---
537
- st.subheader("Tool Definitions")
538
- for tool_class in [CodeGenerationTool, DataRetrievalTool, CodeExecutionTool, CodeDebuggingTool, CodeSummarizationTool, CodeTranslationTool, CodeOptimizationTool, CodeDocumentationTool, ImageGenerationTool, ImageEditingTool, ImageAnalysisTool, TextGenerationTool, QuestionAnsweringTool]:
539
- tool = tool_class()
540
- st.write(f"**{tool.name}**")
541
- st.write(f" Description: {tool.description}")
542
-
543
- # --- Displaying Example Output ---
544
- st.subheader("Example Output")
545
- code_generation_tool = CodeGenerationTool()
546
- st.write(f"""Code Generation Tool Output: {code_generation_tool.run({'language': 'python', 'code_description': "print('Hello, World!')"})}""")
547
-
548
- data_retrieval_tool = DataRetrievalTool()
549
- st.write(f"""Data Retrieval Tool Output: {data_retrieval_tool.run({'data_source': 'https://example.com/data', 'data_query': 'some information'})}""")
550
-
551
- code_execution_tool = CodeExecutionTool()
552
- st.write(f"""Code Execution Tool Output: {code_execution_tool.run({'code': "print('Hello, World!')"})}""")
553
-
554
- code_debugging_tool = CodeDebuggingTool()
555
- st.write(f"""Code Debugging Tool Output: {code_debugging_tool.run({'code': "print('Hello, World!')"})}""")
556
-
557
- code_summarization_tool = CodeSummarizationTool()
558
- st.write(f"""Code Summarization Tool Output: {code_summarization_tool.run({'code': "print('Hello, World!')"})}""")
559
-
560
- code_translation_tool = CodeTranslationTool()
561
- st.write(f"""Code Translation Tool Output: {code_translation_tool.run({'code': "print('Hello, World!')", 'target_language': 'javascript'})}""")
562
-
563
- code_optimization_tool = CodeOptimizationTool()
564
- st.write(f"""Code Optimization Tool Output: {code_optimization_tool.run({'code': "print('Hello, World!')"})}""")
565
-
566
- code_documentation_tool = CodeDocumentationTool()
567
- st.write(f"""Code Documentation Tool Output: {code_documentation_tool.run({'code': "print('Hello, World!')"})}""")
568
-
569
- image_generation_tool = ImageGenerationTool()
570
- st.write(f"""Image Generation Tool Output: {image_generation_tool.run({'description': 'A cat sitting on a couch'})}""")
571
 
572
- image_editing_tool = ImageEditingTool()
573
- st.write(f"""Image Editing Tool Output: {image_editing_tool.run({'image_url': 'https://example.com/image.jpg', 'editing_instructions': 'Make the cat smile'})}""")
574
 
575
- image_analysis_tool = ImageAnalysisTool()
576
- st.write(f"""Image Analysis Tool Output: {image_analysis_tool.run({'image_url': 'https://example.com/image.jpg'})}""")
577
 
578
- question_answering_tool = QuestionAnsweringTool()
579
- st.write(f"""Question Answering Tool Output: {question_answering_tool.run({'question': 'What is the capital of France?', 'context': 'France is a country in Western Europe. Its capital is Paris.'})}""")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
+ from langchain.agents import create_react_agent, AgentExecutor
3
+ from langchain.prompts import PromptTemplate
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  from langchain_community.llms import HuggingFaceHub
5
+ from langchain.tools import Tool
6
+ from langchain.chains import LLMChain
7
  from typing import List, Dict, Any, Optional
8
 
9
+ # Base Tool and specific tools (CodeGenerationTool, DataRetrievalTool, TextGenerationTool) remain the same as in the previous version
10
 
11
+ # --- Specialized Agent Definitions ---
12
+ class SpecializedAgent(Agent):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  def __init__(self, name, role, tools, knowledge_base=None):
14
+ super().__init__(name, role, tools, knowledge_base)
15
+ self.prompt = PromptTemplate.from_template(
16
+ "You are a specialized AI assistant named {name} with the role of {role}. "
17
+ "Use the following tools to complete your task: {tools}\n\n"
18
+ "Task: {input}\n"
19
+ "Thought: Let's approach this step-by-step:\n"
20
+ "{agent_scratchpad}"
 
 
 
 
21
  )
22
+ self.react_agent = create_react_agent(self.llm, self.tools, self.prompt)
23
+ self.agent_executor = AgentExecutor(
24
+ agent=self.react_agent,
25
+ tools=self.tools,
26
+ verbose=True,
27
+ max_iterations=5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
  )
 
 
 
 
 
 
 
29
 
30
+ class RequirementsAgent(SpecializedAgent):
31
  def __init__(self):
32
+ super().__init__("RequirementsAnalyst", "Analyzing and refining project requirements", [TextGenerationTool()])
 
 
 
 
 
 
 
 
 
 
 
 
33
 
34
+ class ArchitectureAgent(SpecializedAgent):
35
  def __init__(self):
36
+ super().__init__("SystemArchitect", "Designing system architecture", [TextGenerationTool()])
 
 
 
 
 
 
 
 
 
 
 
37
 
38
+ class FrontendAgent(SpecializedAgent):
39
  def __init__(self):
40
+ super().__init__("FrontendDeveloper", "Developing the frontend", [CodeGenerationTool()])
41
 
42
+ class BackendAgent(SpecializedAgent):
 
 
 
 
 
 
 
 
43
  def __init__(self):
44
+ super().__init__("BackendDeveloper", "Developing the backend", [CodeGenerationTool(), DataRetrievalTool()])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
 
46
+ class DatabaseAgent(SpecializedAgent):
47
  def __init__(self):
48
+ super().__init__("DatabaseEngineer", "Designing and implementing the database", [CodeGenerationTool(), DataRetrievalTool()])
 
 
 
 
 
 
 
 
 
 
 
49
 
50
+ class TestingAgent(SpecializedAgent):
51
  def __init__(self):
52
+ super().__init__("QAEngineer", "Creating and executing test plans", [CodeGenerationTool(), TextGenerationTool()])
 
 
 
 
 
 
53
 
54
+ class DeploymentAgent(SpecializedAgent):
 
 
 
 
 
 
55
  def __init__(self):
56
+ super().__init__("DevOpsEngineer", "Handling deployment and infrastructure", [CodeGenerationTool(), TextGenerationTool()])
 
 
 
 
 
 
 
 
 
 
 
57
 
58
+ # --- Application Building Sequence ---
59
+ class ApplicationBuilder:
60
  def __init__(self):
61
+ self.agents = [
62
+ RequirementsAgent(),
63
+ ArchitectureAgent(),
64
+ FrontendAgent(),
65
+ BackendAgent(),
66
+ DatabaseAgent(),
67
+ TestingAgent(),
68
+ DeploymentAgent()
69
+ ]
70
+ self.project_state = {}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71
 
72
+ def build_application(self, project_description):
73
+ st.write("Starting application building process...")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74
  for agent in self.agents:
75
+ st.write(f"\n--- {agent.name}'s Turn ---")
76
+ task = self.get_task_for_agent(agent, project_description)
77
+ response = agent.act(task, self.project_state)
78
+ self.project_state[agent.role] = response
79
+ st.write(f"{agent.name}'s output:")
80
+ st.write(response)
81
+ st.write("\nApplication building process completed!")
82
+
83
+ def get_task_for_agent(self, agent, project_description):
84
+ tasks = (
85
+ (RequirementsAgent, f"Analyze and refine the requirements for this project: {project_description}"),
86
+ (ArchitectureAgent, f"Design the system architecture based on these requirements: {self.project_state.get('Analyzing and refining project requirements', '')}"),
87
+ (FrontendAgent, f"Develop the frontend based on this architecture: {self.project_state.get('Designing system architecture', '')}"),
88
+ (BackendAgent, f"Develop the backend based on this architecture: {self.project_state.get('Designing system architecture', '')}"),
89
+ (DatabaseAgent, f"Design and implement the database based on this architecture: {self.project_state.get('Designing system architecture', '')}"),
90
+ (TestingAgent, f"Create a test plan for this application: {project_description}"),
91
+ (DeploymentAgent, f"Create a deployment plan for this application: {project_description}")
92
+ )
93
+
94
+ for agent_class, task in tasks:
95
+ if isinstance(agent, agent_class):
96
+ return task
97
+
98
+ return f"Contribute to the project: {project_description}"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99
 
100
+ # --- Streamlit App ---
101
+ st.title("CODEFUSSION - Full-Stack Application Builder")
102
 
103
+ project_description = st.text_area("Enter your project description:")
 
104
 
105
+ if st.button("Build Application"):
106
+ if project_description:
107
+ app_builder = ApplicationBuilder()
108
+ app_builder.build_application(project_description)
109
+ else:
110
+ st.write("Please enter a project description.")
111
+
112
+ # Display information about the agents
113
+ st.sidebar.title("Agent Information")
114
+ app_builder = ApplicationBuilder()
115
+ for agent in app_builder.agents:
116
+ st.sidebar.write(f"--- {agent.name} ---")
117
+ st.sidebar.write(f"Role: {agent.role}")
118
+ st.sidebar.write("Tools:")
119
+ for tool in agent.tools:
120
+ st.sidebar.write(f"- {tool.name}")
121
+ st.sidebar.write("")