Spaces:
Running
Running
File size: 69,107 Bytes
92e0d37 03ccbe1 771baf7 03ccbe1 f29606a 03ccbe1 f29606a 03ccbe1 92e0d37 03ccbe1 771baf7 03ccbe1 771baf7 03ccbe1 771baf7 03ccbe1 92e0d37 03ccbe1 92e0d37 03ccbe1 f29606a 03ccbe1 92e0d37 03ccbe1 f29606a 03ccbe1 92e0d37 03ccbe1 f29606a 03ccbe1 f29606a 03ccbe1 f29606a 03ccbe1 771baf7 03ccbe1 771baf7 03ccbe1 f29606a 771baf7 03ccbe1 771baf7 03ccbe1 f29606a 03ccbe1 f29606a 03ccbe1 92e0d37 03ccbe1 f29606a 03ccbe1 f29606a 03ccbe1 f29606a 03ccbe1 f29606a 03ccbe1 771baf7 03ccbe1 771baf7 03ccbe1 92e0d37 03ccbe1 f29606a 03ccbe1 771baf7 03ccbe1 771baf7 03ccbe1 f29606a 03ccbe1 f29606a 03ccbe1 771baf7 03ccbe1 771baf7 03ccbe1 f29606a 03ccbe1 f29606a 03ccbe1 f29606a 03ccbe1 f29606a 03ccbe1 f29606a 03ccbe1 f29606a 03ccbe1 f29606a 03ccbe1 f29606a 03ccbe1 f29606a 03ccbe1 92e0d37 03ccbe1 f29606a 03ccbe1 f29606a 03ccbe1 f29606a 771baf7 03ccbe1 771baf7 f29606a 03ccbe1 771baf7 f29606a 03ccbe1 f29606a 771baf7 03ccbe1 f29606a 03ccbe1 771baf7 03ccbe1 92e0d37 03ccbe1 f29606a 03ccbe1 771baf7 03ccbe1 f29606a 03ccbe1 f29606a 03ccbe1 771baf7 03ccbe1 771baf7 03ccbe1 771baf7 03ccbe1 f29606a 03ccbe1 f29606a 771baf7 03ccbe1 92e0d37 03ccbe1 771baf7 03ccbe1 771baf7 03ccbe1 771baf7 03ccbe1 f29606a 03ccbe1 92e0d37 03ccbe1 f29606a 03ccbe1 771baf7 03ccbe1 771baf7 03ccbe1 771baf7 03ccbe1 f29606a 03ccbe1 f29606a 03ccbe1 f29606a 03ccbe1 3ce55cd 03ccbe1 3ce55cd 03ccbe1 3ce55cd 03ccbe1 771baf7 03ccbe1 771baf7 03ccbe1 92e0d37 03ccbe1 92e0d37 771baf7 03ccbe1 92e0d37 03ccbe1 f29606a 03ccbe1 771baf7 03ccbe1 771baf7 03ccbe1 771baf7 03ccbe1 f29606a 03ccbe1 771baf7 03ccbe1 771baf7 03ccbe1 f29606a 03ccbe1 f29606a 03ccbe1 f29606a 03ccbe1 f29606a 03ccbe1 f29606a 03ccbe1 f29606a 03ccbe1 771baf7 03ccbe1 771baf7 92e0d37 03ccbe1 f29606a 03ccbe1 771baf7 03ccbe1 92e0d37 03ccbe1 92e0d37 03ccbe1 92e0d37 03ccbe1 92e0d37 03ccbe1 771baf7 03ccbe1 771baf7 03ccbe1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 |
import json
import os
import re
import time
import logging
import mimetypes
import zipfile
import tempfile
import chardet
import io # Needed for processing CSV from string
import csv # Needed for CSV
import xml.etree.ElementTree as ET # Needed for XML
from datetime import datetime
from typing import List, Dict, Optional, Union, Tuple, Any # Added Any for extracted_data
from pathlib import Path
from urllib.parse import urlparse, urljoin
import requests
import validators
import gradio as gr
from diskcache import Cache
from bs4 import BeautifulSoup
from fake_useragent import UserAgent
from cleantext import clean
import qrcode
from PIL import Image, ImageDraw, ImageFont
import numpy as np
import tarfile
import gzip
import math
# Setup enhanced logging with more detailed formatting
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - [%(filename)s:%(lineno)d] - %(message)s',
handlers=[
logging.StreamHandler(),
logging.FileHandler('app.log', encoding='utf-8')
])
logger = logging.getLogger(__name__) # logger is now defined here
# Conditional imports for document processing
try:
from PyPDF2 import PdfReader
PDF_SUPPORT = True
except ImportError:
PDF_SUPPORT = False
logger.warning("PyPDF2 not installed. PDF file processing will be limited.") # logger is available
try:
from docx import Document
DOCX_SUPPORT = True
except ImportError:
DOCX_SUPPORT = False
logger.warning("python-docx not installed. DOCX file processing will be limited.") # logger is available
try:
from pyth.plugins.rtf15.reader import Rtf15Reader
from pyth.plugins.plaintext.writer import PlaintextWriter
RTF_SUPPORT = True
except ImportError:
RTF_SUPPORT = False
logger.warning("pyth not installed. RTF file processing will be limited.")
try:
from odf.opendocument import OpenDocumentText
from odf import text as odftext
ODT_SUPPORT = True
except ImportError:
ODT_SUPPORT = False
logger.warning("odfpy not installed. ODT file processing will be limited.")
# Setup enhanced logging with more detailed formatting
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - [%(filename)s:%(lineno)d] - %(message)s',
handlers=[
logging.StreamHandler(),
logging.FileHandler('app.log', encoding='utf-8')
])
logger = logging.getLogger(__name__)
# Ensure output directories exist with modern structure
OUTPUTS_DIR = Path('output')
QR_CODES_DIR = OUTPUTS_DIR / 'qr_codes'
TEMP_DIR = OUTPUTS_DIR / 'temp'
for directory in [OUTPUTS_DIR, QR_CODES_DIR, TEMP_DIR]:
directory.mkdir(parents=True, exist_ok=True)
class EnhancedURLProcessor:
"""Advanced URL processing with enhanced content extraction"""
def __init__(self):
self.session = requests.Session()
self.timeout = 15 # Extended timeout for larger content
self.max_retries = 3
self.user_agent = UserAgent()
# Enhanced headers for better site compatibility
self.session.headers.update({
'User-Agent': self.user_agent.random,
'Accept': 'text/html, application/json, application/xml, text/plain, */*', # Request common types
'Accept-Language': 'en-US,en;q=0.9',
'Accept-Encoding': 'gzip, deflate, br',
'Connection': 'keep-alive',
'Upgrade-Insecure-Requests': '1', # May be ignored for non-HTML
'Sec-Fetch-Dest': 'document',
'Sec-Fetch-Mode': 'navigate',
'Sec-Fetch-Site': 'none',
'Sec-Fetch-User': '?1',
'DNT': '1'
})
def validate_url(self, url: str) -> Dict:
"""Enhanced URL validation with detailed feedback"""
try:
if not validators.url(url):
return {'is_valid': False, 'message': 'Invalid URL format', 'details': 'URL must begin with http:// or https://'}
parsed = urlparse(url)
if not all([parsed.scheme, parsed.netloc]):
return {'is_valid': False, 'message': 'Incomplete URL', 'details': 'Missing scheme or domain'}
# Try HEAD request first to check accessibility
try:
head_response = self.session.head(url, timeout=5)
head_response.raise_for_status()
final_url = head_response.url # Capture potential redirects
except requests.exceptions.RequestException:
# If HEAD fails, try GET as some servers don't support HEAD
response = self.session.get(url, timeout=self.timeout)
response.raise_for_status()
final_url = response.url # Capture potential redirects
return {
'is_valid': True,
'message': 'URL is valid and accessible',
'details': {
'final_url': final_url,
'content_type': head_response.headers.get('Content-Type', 'unknown'),
'server': head_response.headers.get('Server', 'unknown'),
'size': head_response.headers.get('Content-Length', 'unknown')
}
}
except Exception as e:
return {'is_valid': False, 'message': f'URL validation failed: {str(e)}', 'details': str(e)}
def fetch_content(self, url: str, retry_count: int = 0) -> Optional[Dict]:
"""Enhanced content fetcher with retry mechanism and complete character extraction"""
try:
logger.info(f"Fetching content from URL: {url} (Attempt {retry_count + 1}/{self.max_retries})")
# Update User-Agent randomly for each request
self.session.headers.update({'User-Agent': self.user_agent.random})
response = self.session.get(url, timeout=self.timeout)
response.raise_for_status()
final_url = response.url # Capture potential redirects
# Detect encoding
if response.encoding is None or response.encoding == 'ISO-8859-1': # chardet often better than default response.encoding for text
encoding_detection = chardet.detect(response.content)
encoding = encoding_detection['encoding'] or 'utf-8'
logger.debug(f"Detected encoding '{encoding}' with confidence {encoding_detection['confidence']:.2f} for {url}")
else:
encoding = response.encoding
logger.debug(f"Using response.encoding '{encoding}' for {url}")
# Decode content with fallback
try:
raw_content = response.content.decode(encoding, errors='replace')
except (UnicodeDecodeError, LookupError):
# Fallback to a more common encoding if the first attempt fails
try:
raw_content = response.content.decode('utf-8', errors='replace')
encoding = 'utf-8 (fallback)'
logger.warning(f"Decoding with {encoding} fallback for {url}")
except Exception:
raw_content = response.content.decode('latin-1', errors='replace') # Another common fallback
encoding = 'latin-1 (fallback)'
logger.warning(f"Decoding with {encoding} fallback for {url}")
# Extract metadata
metadata = {
'original_url': url,
'final_url': final_url,
'timestamp': datetime.now().isoformat(),
'detected_encoding': encoding,
'content_type': response.headers.get('Content-Type', ''),
'content_length': len(response.content),
'headers': dict(response.headers),
'status_code': response.status_code
}
# Process based on content type
processed_extraction = self._process_web_content(raw_content, metadata['content_type'], final_url)
return {
'source': 'url',
'url': url, # Keep original URL as identifier
'raw_content': raw_content,
'metadata': metadata,
'extracted_data': processed_extraction['data'],
'processing_notes': processed_extraction['notes']
}
except requests.exceptions.RequestException as e:
if retry_count < self.max_retries - 1:
logger.warning(f"Retry {retry_count + 1}/{self.max_retries} for URL: {url}")
time.sleep(2 ** retry_count) # Exponential backoff
return self.fetch_content(url, retry_count + 1)
logger.error(f"Failed to fetch content after {self.max_retries} attempts from {url}: {e}")
return {
'source': 'url',
'url': url,
'raw_content': None,
'metadata': {'original_url': url, 'timestamp': datetime.now().isoformat()},
'extracted_data': None,
'processing_notes': f"Failed to fetch content: {str(e)}"
}
except Exception as e:
logger.error(f"Unexpected error while fetching or processing URL {url}: {e}")
return {
'source': 'url',
'url': url,
'raw_content': raw_content if 'raw_content' in locals() else None,
'metadata': metadata if 'metadata' in locals() else {'original_url': url, 'timestamp': datetime.now().isoformat()},
'extracted_data': None,
'processing_notes': f"Unexpected processing error: {str(e)}"
}
def _process_web_content(self, content: str, content_type: str, base_url: str) -> Dict[str, Any]:
"""Process content based on detected content type"""
lower_content_type = content_type.lower()
notes = []
extracted_data: Any = None # Use Any to allow different types
try:
if 'text/html' in lower_content_type:
logger.debug(f"Processing HTML content from {base_url}")
extracted_data = self._process_html_content_enhanced(content, base_url)
notes.append("Processed as HTML")
elif 'application/json' in lower_content_type or 'text/json' in lower_content_type:
logger.debug(f"Processing JSON content from {base_url}")
try:
extracted_data = json.loads(content)
notes.append("Parsed as JSON")
except json.JSONDecodeError as e:
extracted_data = content # Keep raw text if invalid JSON
notes.append(f"Failed to parse as JSON: {e}")
logger.warning(f"Failed to parse JSON from {base_url}: {e}")
except Exception as e:
extracted_data = content
notes.append(f"Error processing JSON: {e}")
logger.error(f"Error processing JSON from {base_url}: {e}")
elif 'application/xml' in lower_content_type or 'text/xml' in lower_content_type or lower_content_type.endswith('+xml'):
logger.debug(f"Processing XML content from {base_url}")
try:
# Try parsing XML. Convert to a string or a dict representation if needed.
# For simplicity, we'll convert to a readable string representation of the tree.
root = ET.fromstring(content)
# A simple way to represent XML as text
xml_text = ET.tostring(root, encoding='unicode', method='xml')
extracted_data = xml_text # Store as string for now
notes.append("Parsed as XML (text representation)")
except ET.ParseError as e:
extracted_data = content
notes.append(f"Failed to parse as XML: {e}")
logger.warning(f"Failed to parse XML from {base_url}: {e}")
except Exception as e:
extracted_data = content
notes.append(f"Error processing XML: {e}")
logger.error(f"Error processing XML from {base_url}: {e}")
elif 'text/plain' in lower_content_type or 'text/' in lower_content_type: # Catch other text types
logger.debug(f"Processing Plain Text content from {base_url}")
extracted_data = content
notes.append("Processed as Plain Text")
else:
logger.debug(f"Unknown content type '{content_type}' from {base_url}. Storing raw content.")
extracted_data = content # Store raw content for unknown types
notes.append(f"Unknown content type '{content_type}'. Stored raw text.")
except Exception as e:
logger.error(f"Unexpected error in _process_web_content for {base_url} ({content_type}): {e}")
extracted_data = content # Fallback to raw content on error
notes.append(f"Unexpected processing error: {e}. Stored raw text.")
return {'data': extracted_data, 'notes': notes}
def _process_html_content_enhanced(self, content: str, base_url: str) -> Dict[str, Any]:
"""Process HTML content, preserving text, and extracting metadata."""
extracted: Dict[str, Any] = {
'title': None,
'meta_description': None, # Add extraction for meta description
'full_text': "",
'links': [] # Add extraction for links
}
try:
soup = BeautifulSoup(content, 'html.parser')
# Extract Title
if soup.title and soup.title.string:
extracted['title'] = soup.title.string.strip()
# Extract Meta Description
meta_desc = soup.find('meta', attrs={'name': 'description'})
if meta_desc and meta_desc.get('content'):
extracted['meta_description'] = meta_desc['content'].strip()
# Extract and process links (convert relative to absolute)
for a_tag in soup.find_all('a', href=True):
href = a_tag['href']
text = a_tag.get_text().strip()
try:
absolute_url = urljoin(base_url, href)
extracted['links'].append({'text': text, 'url': absolute_url})
except Exception:
extracted['links'].append({'text': text, 'url': href}) # Keep relative if join fails
# Extract all text content (similar to stripped_strings but ensures order)
text_parts = []
# Use a more robust way to get visible text, including handling script/style tags
for script_or_style in soup(["script", "style"]):
script_or_style.extract() # Remove script and style tags
text = soup.get_text(separator='\n') # Get text with newlines
# Clean up whitespace and empty lines
lines = text.splitlines()
cleaned_lines = [line.strip() for line in lines if line.strip()]
extracted['full_text'] = '\n'.join(cleaned_lines)
except Exception as e:
logger.error(f"Enhanced HTML processing error for {base_url}: {e}")
extracted['full_text'] = content # Fallback to raw content
extracted['processing_error'] = f"Enhanced HTML processing failed: {e}"
return extracted
class EnhancedFileProcessor:
"""Advanced file processing with enhanced content extraction"""
def __init__(self, max_file_size: int = 5 * 1024 * 1024 * 1024): # 5GB default
self.max_file_size = max_file_size
# Expanded supported extensions to include common docs and structured formats
self.supported_extensions = {
'.txt', '.md', '.csv', '.json', '.xml', '.html', '.htm',
'.log', '.yml', '.yaml', '.ini', '.conf', '.cfg',
'.pdf', '.doc', '.docx', '.rtf', '.odt',
# Archives are handled separately but listed for context
'.zip', '.tar', '.gz', '.bz2', '.7z', '.rar',
}
self.archive_extensions = {'.zip', '.tar', '.gz', '.bz2', '.7z', '.rar'}
def process_file(self, file) -> List[Dict]:
"""Process uploaded file with enhanced error handling and complete extraction"""
if not file or not hasattr(file, 'name'):
logger.warning("Received invalid file object.")
return []
dataset = []
file_path = Path(file.name) # Use Path object for easier handling
try:
file_size = file_path.stat().st_size
if file_size > self.max_file_size:
logger.warning(f"File '{file_path.name}' size ({file_size} bytes) exceeds maximum allowed size ({self.max_file_size} bytes).")
return [{
'source': 'file',
'filename': file_path.name,
'file_size': file_size,
'extracted_data': None,
'processing_notes': 'File size exceeds limit.'
}]
with tempfile.TemporaryDirectory() as temp_dir:
temp_dir_path = Path(temp_dir)
# Decide processing strategy
if file_path.suffix.lower() in self.archive_extensions:
dataset.extend(self._process_archive(file_path, temp_dir_path))
elif file_path.suffix.lower() in self.supported_extensions:
# Pass the path to the single file processor
dataset.extend(self._process_single_file(file_path))
else:
logger.warning(f"Unsupported file type for processing: '{file_path.name}'")
# Optionally process as raw text even if extension is unsupported
try:
# Read as text with error replacement
content_bytes = file_path.read_bytes()
encoding_detection = chardet.detect(content_bytes)
encoding = encoding_detection['encoding'] or 'utf-8'
raw_content = content_bytes.decode(encoding, errors='replace')
dataset.append({
'source': 'file',
'filename': file_path.name,
'file_size': file_size,
'mime_type': mimetypes.guess_type(file_path.name)[0] or 'unknown/unknown',
'extracted_data': {'plain_text': raw_content}, # Store raw text under a key
'processing_notes': 'Processed as plain text (unsupported extension).'
})
except Exception as e:
logger.error(f"Error reading or processing unsupported file '{file_path.name}' as text: {e}")
dataset.append({
'source': 'file',
'filename': file_path.name,
'file_size': file_size,
'mime_type': mimetypes.guess_type(file_path.name)[0] or 'unknown/unknown',
'extracted_data': None,
'processing_notes': f'Unsupported file type and failed to read as text: {e}'
})
except Exception as e:
logger.error(f"Error processing file '{file_path.name}': {str(e)}")
dataset.append({
'source': 'file',
'filename': file_path.name,
'file_size': file_size if 'file_size' in locals() else None,
'extracted_data': None,
'processing_notes': f'Overall file processing error: {str(e)}'
})
return dataset
def _is_archive(self, filepath: Union[str, Path]) -> bool:
"""Check if file is an archive"""
p = Path(filepath) if isinstance(filepath, str) else filepath
return p.suffix.lower() in self.archive_extensions
def _process_single_file(self, file_path: Path) -> List[Dict]:
"""Process a single file with enhanced character extraction and format-specific handling"""
dataset_entries = []
filename = file_path.name
file_size = file_path.stat().st_size
mime_type, _ = mimetypes.guess_type(file_path)
mime_type = mime_type or 'unknown/unknown'
file_extension = file_path.suffix.lower()
logger.info(f"Processing single file: '{filename}' ({mime_type}, {file_size} bytes)")
raw_content: Optional[str] = None
extracted_data: Any = None
processing_notes = []
try:
# Read content efficiently
content_bytes = file_path.read_bytes()
encoding_detection = chardet.detect(content_bytes)
encoding = encoding_detection['encoding'] or 'utf-8'
raw_content = content_bytes.decode(encoding, errors='replace')
# --- Attempt format-specific parsing ---
# 1. Attempt JSON parsing (explicit .json or application/json, OR if content looks like JSON)
is_explicit_json = mime_type == 'application/json' or file_extension == '.json'
looks_like_json = raw_content.strip().startswith('{') or raw_content.strip().startswith('[')
if is_explicit_json or looks_like_json:
try:
extracted_data = json.loads(raw_content)
processing_notes.append("Parsed as JSON.")
if not is_explicit_json:
processing_notes.append("Note: Content looked like JSON despite extension/mime.")
logger.warning(f"File '{filename}' identified as JSON content despite extension/mime.")
mime_type = 'application/json' # Update mime_type if successfully parsed as JSON
except json.JSONDecodeError as e:
processing_notes.append(f"Failed to parse as JSON: {e}.")
if is_explicit_json:
logger.error(f"Explicit JSON file '{filename}' has invalid format: {e}")
else:
logger.warning(f"Content of '{filename}' looks like JSON but failed to parse: {e}")
except Exception as e:
processing_notes.append(f"Error processing JSON: {e}.")
logger.error(f"Error processing JSON in '{filename}': {e}")
# 2. Attempt XML parsing (if not already parsed as JSON, and looks like XML)
# Add check if extracted_data is still None (meaning JSON parsing failed or wasn't attempted/relevant)
looks_like_xml = extracted_data is None and raw_content.strip().startswith('<') and raw_content.strip().endswith('>') # Simple heuristic
is_explicit_xml = extracted_data is None and (mime_type in ('application/xml', 'text/xml') or mime_type.endswith('+xml') or file_extension in ('.xml', '.xsd'))
if extracted_data is None and (is_explicit_xml or looks_like_xml):
try:
root = ET.fromstring(raw_content)
# Convert XML element tree to a structured dictionary or string
# Simple string representation for QR code suitability
extracted_data = ET.tostring(root, encoding='unicode', method='xml')
processing_notes.append("Parsed as XML (text representation).")
if not is_explicit_xml:
processing_notes.append("Note: Content looked like XML despite extension/mime.")
# Update mime_type if successfully parsed as XML
if 'xml' not in mime_type: mime_type = 'application/xml'
except ET.ParseError as e:
processing_notes.append(f"Failed to parse as XML: {e}.")
if is_explicit_xml:
logger.error(f"Explicit XML file '{filename}' has invalid format: {e}")
else:
logger.warning(f"Content of '{filename}' looks like XML but failed to parse: {e}")
except Exception as e:
processing_notes.append(f"Error processing XML: {e}.")
logger.error(f"Error processing XML in '{filename}': {e}")
# 3. Attempt CSV parsing (if not already parsed, and looks like CSV or is explicit CSV)
is_explicit_csv = extracted_data is None and (mime_type == 'text/csv' or file_extension == '.csv')
# Heuristic: check for commas/semicolons and multiple lines
looks_like_csv = extracted_data is None and (',' in raw_content or ';' in raw_content) and ('\n' in raw_content or len(raw_content.splitlines()) > 1)
if extracted_data is None and (is_explicit_csv or looks_like_csv):
try:
# Use Sniffer to guess dialect for better compatibility
dialect = 'excel' # Default dialect
try:
# Look at first few lines to guess dialect
sample = '\n'.join(raw_content.splitlines()[:10])
if sample:
dialect = csv.Sniffer().sniff(sample).name
logger.debug(f"Sniffer detected CSV dialect: {dialect} for '{filename}'")
except csv.Error:
logger.debug(f"Sniffer failed to detect dialect for '{filename}', using 'excel'.")
dialect = 'excel' # Fallback
# Read using the guessed or default dialect
csv_reader = csv.reader(io.StringIO(raw_content), dialect=dialect)
rows = list(csv_reader)
if rows:
# Limit the number of rows included for potentially huge CSVs
max_rows_preview = 100
extracted_data = {
'headers': rows[0] if rows[0] else None, # Assume first row is header
'rows': rows[1:max_rows_preview+1] # Get up to max_rows_preview data rows
}
if len(rows) > max_rows_preview + 1:
processing_notes.append(f"CSV truncated to {max_rows_preview} data rows.")
processing_notes.append("Parsed as CSV.")
if not is_explicit_csv:
processing_notes.append("Note: Content looked like CSV despite extension/mime.")
mime_type = 'text/csv' # Update mime_type
else:
extracted_data = "Empty CSV"
processing_notes.append("Parsed as empty CSV.")
if not is_explicit_csv:
processing_notes.append("Note: Content looked like CSV but was empty.")
except Exception as e:
processing_notes.append(f"Failed to parse as CSV: {e}.")
logger.warning(f"Failed to parse CSV from '{filename}': {e}")
# 4. Attempt Document Text Extraction (if not already parsed)
if extracted_data is None:
try:
extracted_text = None
if file_extension == '.pdf' and PDF_SUPPORT:
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmp_file:
tmp_file.write(content_bytes) # Write bytes to temp file
temp_path = Path(tmp_file.name)
try:
reader = PdfReader(temp_path)
text_content = "".join(page.extract_text() or "" for page in reader.pages)
extracted_text = text_content
processing_notes.append("Extracted text from PDF.")
finally:
temp_path.unlink() # Clean up temp file
elif file_extension == '.docx' and DOCX_SUPPORT:
with tempfile.NamedTemporaryFile(delete=False, suffix='.docx') as tmp_file:
tmp_file.write(content_bytes) # Write bytes to temp file
temp_path = Path(tmp_file.name)
try:
document = Document(temp_path)
text_content = "\n".join(paragraph.text for paragraph in document.paragraphs)
extracted_text = text_content
processing_notes.append("Extracted text from DOCX.")
finally:
temp_path.unlink() # Clean up temp file
elif file_extension == '.rtf' and RTF_SUPPORT:
# pyth can read directly from file-like object or string
try:
doc = Rtf15Reader.read(io.StringIO(raw_content))
text_content = PlaintextWriter.write(doc).getvalue()
extracted_text = text_content
processing_notes.append("Extracted text from RTF.")
except Exception as e:
processing_notes.append(f"RTF extraction error: {e}")
logger.warning(f"Failed to extract RTF text from '{filename}': {e}")
elif file_extension == '.odt' and ODT_SUPPORT:
with tempfile.NamedTemporaryFile(delete=False, suffix='.odt') as tmp_file:
tmp_file.write(content_bytes) # Write bytes to temp file
temp_path = Path(tmp_file.name)
try:
text_doc = OpenDocumentText(temp_path)
paragraphs = text_doc.getElementsByType(odftext.P)
text_content = "\n".join("".join(node.text for node in p.childNodes) for p in paragraphs)
extracted_text = text_content
processing_notes.append("Extracted text from ODT.")
finally:
temp_path.unlink() # Clean up temp file
elif file_extension in ['.doc', '.ppt', '.pptx', '.xls', '.xlsx']:
# These require more complex or platform-specific libraries (e.g. antiword, pandoc, COM objects on Windows)
processing_notes.append(f"Automatic text extraction for {file_extension.upper()} not fully implemented.")
logger.warning(f"Automatic text extraction for {file_extension.upper()} not fully implemented for '{filename}'.")
if extracted_text is not None:
# Limit extracted text size
max_extracted_text_size = 10000 # Limit text preview
extracted_data = {'text': extracted_text[:max_extracted_text_size]}
if len(extracted_text) > max_extracted_text_size:
extracted_data['text'] += "..."
processing_notes.append("Extracted text truncated.")
except ImportError as e:
processing_notes.append(f"Missing dependency for document type ({e}). Cannot extract text.")
except Exception as e:
processing_notes.append(f"Error during document text extraction: {e}")
logger.warning(f"Error during document text extraction for '{filename}': {e}")
# 5. Fallback to Plain Text (if no specific extraction succeeded)
if extracted_data is None:
extracted_data = {'plain_text': raw_content}
processing_notes.append("Stored as plain text.")
# Re-guess mime type if it was something specific like application/octet-stream and we just got text
if mime_type in ['unknown/unknown', 'application/octet-stream']:
guessed_text_mime, _ = mimetypes.guess_type('dummy.txt') # Use a dummy file name to guess plain text
if guessed_text_mime: mime_type = guessed_text_mime
except Exception as e:
# Catch errors during initial read or other unexpected issues
logger.error(f"Fatal error processing single file '{filename}': {e}")
processing_notes.append(f"Fatal processing error: {e}")
raw_content = None # Ensure raw_content is None if reading failed
extracted_data = None
# Add file info to the entry
entry = {
'source': 'file',
'filename': filename,
'file_size': file_size,
'mime_type': mime_type,
'created': datetime.fromtimestamp(file_path.stat().st_ctime).isoformat() if file_path.exists() else None,
'modified': datetime.fromtimestamp(file_path.stat().st_mtime).isoformat() if file_path.exists() else None,
'raw_content': raw_content, # Always include raw content if readable
'extracted_data': extracted_data, # Include the structured/extracted data
'processing_notes': processing_notes # Include any notes/errors encountered
}
dataset_entries.append(entry)
return dataset_entries
def _process_archive(self, archive_path: Path, extract_to: Path) -> List[Dict]:
"""Process an archive file with enhanced extraction"""
dataset = []
archive_extension = archive_path.suffix.lower()
logger.info(f"Processing archive: '{archive_path.name}'")
try:
if archive_extension == '.zip':
if zipfile.is_zipfile(archive_path):
with zipfile.ZipFile(archive_path, 'r') as zip_ref:
for file_info in zip_ref.infolist():
if file_info.file_size > 0 and not file_info.filename.endswith('/'):
try:
zip_ref.extract(file_info, path=extract_to)
extracted_file_path = extract_to / file_info.filename
# Recursively process the extracted file if it's supported and not an archive itself
if extracted_file_path.suffix.lower() in self.supported_extensions and not self._is_archive(extracted_file_path):
dataset.extend(self._process_single_file(extracted_file_path))
elif extracted_file_path.suffix.lower() in self.archive_extensions:
# Recursively process nested archives (careful with depth!)
logger.info(f"Found nested archive '{file_info.filename}', processing recursively.")
dataset.extend(self._process_archive(extracted_file_path, extract_to))
else:
logger.debug(f"Skipping unsupported file in archive: '{file_info.filename}'")
except Exception as e:
logger.warning(f"Error extracting/processing file '{file_info.filename}' from zip '{archive_path.name}': {e}")
else:
logger.error(f"'{archive_path.name}' is not a valid zip file.")
elif archive_extension in ('.tar', '.gz', '.tgz'):
try:
# Determine mode: 'r' for tar, 'r:gz' for tar.gz, 'r:bz2' for tar.bz2 (bz2 not fully supported yet)
mode = 'r'
if archive_extension in ('.tar.gz', '.tgz'): mode = 'r:gz'
# elif archive_extension == '.tar.bz2': mode = 'r:bz2' # Needs bz2 support
# Note: 'r:*' attempts to guess compression, safer to be explicit
with tarfile.open(archive_path, mode) as tar_ref:
for member in tar_ref.getmembers():
if member.isfile():
try:
tar_ref.extract(member, path=extract_to)
extracted_file_path = extract_to / member.name
# Recursively process extracted file
if extracted_file_path.suffix.lower() in self.supported_extensions and not self._is_archive(extracted_file_path):
dataset.extend(self._process_single_file(extracted_file_path))
elif extracted_file_path.suffix.lower() in self.archive_extensions:
logger.info(f"Found nested archive '{member.name}', processing recursively.")
dataset.extend(self._process_archive(extracted_file_path, extract_to))
else:
logger.debug(f"Skipping unsupported file in archive: '{member.name}'")
except Exception as e:
logger.warning(f"Error extracting/processing file '{member.name}' from tar '{archive_path.name}': {e}")
except tarfile.TarError as e:
logger.error(f"Error processing TAR archive '{archive_path.name}': {e}")
elif archive_extension == '.gz':
# GZIP archives typically contain a single file. Extract it and process.
extracted_name = archive_path.stem # Get name without .gz
extracted_path = extract_to / extracted_name
try:
with gzip.open(archive_path, 'rb') as gz_file, open(extracted_path, 'wb') as outfile:
outfile.write(gz_file.read())
# Process the extracted file if supported
if extracted_path.suffix.lower() in self.supported_extensions and not self._is_archive(extracted_path):
dataset.extend(self._process_single_file(extracted_path))
elif extracted_path.suffix.lower() in self.archive_extensions:
logger.info(f"Found nested archive '{extracted_name}', processing recursively.")
dataset.extend(self._process_archive(extracted_path, extract_to))
else:
logger.debug(f"Skipping unsupported file (from gz): '{extracted_name}'")
except gzip.GzipFile as e:
logger.error(f"Error processing GZIP file '{archive_path.name}': {e}")
except Exception as e:
logger.error(f"Error extracting/processing from GZIP '{archive_path.name}': {e}")
finally:
if extracted_path.exists(): extracted_path.unlink() # Clean up extracted file
# TODO: Add support for other archive types (.bz2, .7z, .rar)
elif archive_extension in ('.bz2', '.7z', '.rar'):
logger.warning(f"Support for {archive_extension} archives is not yet fully implemented and requires external tools/libraries.")
except Exception as e:
logger.error(f"Overall archive processing error for '{archive_path.name}': {e}")
# Clean up extracted files in temp_dir after processing
# Handled by context manager 'with tempfile.TemporaryDirectory()'
return dataset
def chunk_data(self, data: Union[Dict, List], max_size: int = 2953) -> List[Dict]:
"""Enhanced data chunking with sequence metadata"""
try:
# Convert data to JSON string
# Use separators=(',', ':') to remove unnecessary whitespace for maximum data density in QR code
json_str = json.dumps(data, ensure_ascii=False, separators=(',', ':'))
total_length = len(json_str)
# Calculate overhead for metadata
# Metadata structure: {"idx":0,"tc":1,"tl":XXX,"hash":"YYYY","data":"..."}, shortened keys
metadata_template = {
"idx": 0, # chunk_index
"tc": 1, # total_chunks
"tl": total_length, # total_length
"hash": "", # chunk_hash
"data": "" # chunk_data
}
# Estimate overhead more accurately by dumping a sample metadata structure
# and adding some safety margin. Shortened keys reduce overhead.
overhead_estimate = len(json.dumps(metadata_template, separators=(',', ':'))) + 50 # Extra padding
# Calculate effective chunk size
effective_chunk_size = max_size - overhead_estimate
if effective_chunk_size <= 0:
logger.error(f"Max QR size ({max_size}) is too small for metadata overhead ({overhead_estimate}). Cannot chunk.")
return []
if total_length <= effective_chunk_size:
# Data fits in one chunk
chunk_data = json_str # Use the full string
chunk = {
"idx": 0,
"tc": 1,
"tl": total_length,
"hash": hash(chunk_data) & 0xFFFFFFFF, # 32-bit hash
"data": chunk_data
}
return [chunk]
# Calculate number of chunks needed
num_chunks = -(-total_length // effective_chunk_size) # Ceiling division
# Adjust chunk_size slightly to distribute evenly, maybe not strictly necessary
# chunk_size = -(-total_length // num_chunks) # Use this if perfect distribution is needed
chunks = []
current_pos = 0
for i in range(num_chunks):
# Find the end of the current chunk. Avoid splitting in the middle of escaped characters or surrogate pairs if possible,
# but simple slicing is usually okay for standard text that's already been errors='replace'.
# We'll use basic slicing for simplicity, as the JSON string is just text.
end_pos = min(current_pos + effective_chunk_size, total_length)
# Basic attempt to not break in the middle of a UTF-8 character if slicing bytes,
# but since we are slicing a *decoded string*, this is less of an issue.
# However, slicing in the middle of JSON structure is bad.
# For simplicity and robustness with arbitrary JSON structures, slicing the raw string is the easiest.
chunk_data_str = json_str[current_pos:end_pos]
chunk = {
"idx": i,
"tc": num_chunks,
"tl": total_length,
"hash": hash(chunk_data_str) & 0xFFFFFFFF,
"data": chunk_data_str
}
chunks.append(chunk)
current_pos = end_pos
# Final check: Ensure all data was chunked
if current_pos < total_length:
# This shouldn't happen with correct ceiling division and min()
logger.error(f"Chunking logic error: Only processed {current_pos} of {total_length} characters.")
return [] # Indicate failure
logger.info(f"Chunked data into {num_chunks} chunks for QR codes.")
return chunks
except Exception as e:
logger.error(f"Error chunking data: {e}")
return []
def generate_stylish_qr(data: Union[str, Dict],
filename: str,
size: int = 10,
border: int = 4,
fill_color: str = "#000000",
back_color: str = "#FFFFFF") -> str:
"""Generate a stylish QR code with enhanced visual appeal"""
try:
qr = qrcode.QRCode(
version=None,
error_correction=qrcode.constants.ERROR_CORRECT_M, # Increased error correction
box_size=size,
border=border
)
# Add data to QR code
if isinstance(data, dict):
# Use compact JSON representation
qr.add_data(json.dumps(data, ensure_ascii=False, separators=(',', ':')))
else:
qr.add_data(str(data)) # Ensure it's a string
qr.make(fit=True)
# Create QR code image with custom colors
qr_image = qr.make_image(fill_color=fill_color, back_color=back_color)
# Convert to RGBA for transparency support and potential overlays
qr_image = qr_image.convert('RGBA')
# Optional: Add a small logo or icon in the center (requires design)
# logo = Image.open("logo.png").convert("RGBA")
# logo = logo.resize((logo.width // 4, logo.height // 4)) # Resize logo
# logo_pos = ((qr_image.width - logo.width) // 2, (qr_image.height - logo.height) // 2)
# qr_image.paste(logo, logo_pos, logo)
# Add subtle gradient overlay (optional visual enhancement)
try:
gradient = Image.new('RGBA', qr_image.size, (0, 0, 0, 0))
draw = ImageDraw.Draw(gradient)
# Horizontal gradient for subtle effect
for i in range(qr_image.width):
# Fades from left (alpha=0) to right (max_alpha)
alpha = int(255 * (i/qr_image.width) * 0.05) # e.g., 5% maximum opacity fade-in
draw.line([(i, 0), (i, qr_image.height)], fill=(0, 0, 0, alpha))
# Combine images
final_image = Image.alpha_composite(qr_image, gradient)
except Exception as e:
logger.warning(f"Failed to add gradient overlay to QR code: {e}. Using plain QR.")
final_image = qr_image
# Save the image
output_path = QR_CODES_DIR / filename
final_image.save(output_path, quality=90) # Save with slightly lower quality for smaller file size
return str(output_path)
except Exception as e:
logger.error(f"QR generation error: {e}")
return ""
def generate_qr_codes(data: Union[str, Dict, List], combined: bool = True) -> List[str]:
"""Generate QR codes with enhanced visual appeal and metadata"""
# Assume 'data' here is the list of dictionaries produced by process_inputs
if not isinstance(data, list):
logger.error("generate_qr_codes received data that is not a list.")
return []
try:
file_processor = EnhancedFileProcessor() # Use the enhanced processor for chunking
paths = []
if combined:
# Process combined data
chunks = file_processor.chunk_data(data) # chunk_data works on the list of dicts
if not chunks:
logger.warning("No chunks generated for combined data.")
return []
for i, chunk in enumerate(chunks):
filename = f'combined_qr_{int(time.time())}_{i+1}_of_{len(chunks)}.png'
qr_path = generate_stylish_qr(
data=chunk, # Pass the chunk dictionary
filename=filename,
fill_color="#1a365d", # Deep blue
back_color="#ffffff"
)
if qr_path:
paths.append(qr_path)
else:
logger.warning(f"Failed to generate QR for chunk {i+1}/{len(chunks)}.")
else:
# Process individual items (each dictionary in the list)
if data: # Ensure data is not empty
for idx, item in enumerate(data):
chunks = file_processor.chunk_data(item) # chunk_data works on individual dict
if not chunks:
logger.warning(f"No chunks generated for item {idx+1}.")
continue
for chunk_idx, chunk in enumerate(chunks):
filename = f'item_{idx+1}_chunk_{chunk_idx+1}_of_{len(chunks)}_{int(time.time())}.png'
qr_path = generate_stylish_qr(
data=chunk, # Pass the chunk dictionary
filename=filename,
fill_color="#1a365d", # Deep blue
back_color="#ffffff"
)
if qr_path:
paths.append(qr_path)
else:
logger.warning(f"Failed to generate QR for item {idx+1} chunk {chunk_idx+1}/{len(chunks)}.")
else:
logger.warning("No items in data list to process individually.")
logger.info(f"Generated {len(paths)} QR codes.")
return paths
except Exception as e:
logger.error(f"QR code generation error: {e}")
return []
# Keep the Gradio UI definition and main function as they are,
# as the changes are internal to the processing classes and the
# process_inputs function already handles calling them and getting
# the combined list of results.
def create_modern_interface():
"""Create a modern and visually appealing Gradio interface"""
# Modern CSS styling
css = """
/* Modern color scheme */
:root {
--primary-color: #1a365d;
--secondary-color: #2d3748;
--accent-color: #4299e1;
--background-color: #f7fafc;
--success-color: #48bb78;
--error-color: #f56565;
--warning-color: #ed8936;
}
/* Container styling */
.container {
max-width: 1200px;
margin: auto;
padding: 2rem;
background-color: var(--background-color);
border-radius: 1rem;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
/* Component styling */
.input-container {
background-color: white;
padding: 1.5rem;
border-radius: 0.5rem;
border: 1px solid #e2e8f0;
margin-bottom: 1rem;
}
/* Button styling */
.primary-button {
background-color: var(--primary-color);
color: white;
padding: 0.75rem 1.5rem;
border-radius: 0.375rem;
border: none;
cursor: pointer;
transition: all 0.2s;
}
.primary-button:hover {
background-color: var(--accent-color);
transform: translateY(-1px);
}
/* Status messages */
.status {
padding: 1rem;
border-radius: 0.375rem;
margin: 1rem 0;
}
.status.success { background-color: #f0fff4; color: var(--success-color); }
.status.error { background-color: #fff5f5; color: var(--error-color); }
.status.warning { background-color: #fffaf0; color: var(--warning-color); }
/* Gallery styling */
.gallery {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));
gap: 1rem;
padding: 1rem;
background-color: white;
border-radius: 0.5rem;
border: 1px solid #e2e8f0;
}
.gallery img {
width: 100%;
height: auto;
border-radius: 0.375rem;
transition: transform 0.2s;
}
.gallery img:hover {
transform: scale(1.05);
}
/* QR Code Viewport Styling */
.viewport-container {
display: grid;
gap: 0.5rem;
padding: 1rem;
background-color: white;
border-radius: 0.5rem;
border: 1px solid #e2e8f0;
margin-top: 1rem;
}
.viewport-item {
display: flex;
flex-direction: column;
align-items: center;
}
.viewport-item img {
width: 100%;
height: auto;
border-radius: 0.375rem;
transition: transform 0.2s;
max-width: 150px; /* Adjust as needed */
max-height: 150px; /* Adjust as needed */
}
"""
# Create interface with modern design
with gr.Blocks(css=css, title="Advanced Data Processor & QR Generator") as interface:
interface.head += """
<script>
let enabledStates = [];
function updateEnabledStates(checkbox) {
const index = parseInt(checkbox.dataset.index);
if (checkbox.checked) {
if (!enabledStates.includes(index)) {
enabledStates.push(index);
}
} else {
enabledStates = enabledStates.filter(item => item !== index);
}
// Send the updated state back to Gradio (you might need to adjust the target component)
const enabled_qr_codes_component = document.querySelector('[data-component-type="state"][data-state-name="enabled_qr_codes"]');
if (enabled_qr_codes_component) {
enabled_qr_codes_component.value = JSON.stringify(enabledStates);
enabled_qr_codes_component.dispatchEvent(new Event('input')); // Trigger update
}
console.log("Enabled QR Code Indices:", enabledStates);
// You might want to trigger an update of the viewport here if needed
}
</script>
"""
qr_code_paths = gr.State([])
gr.Markdown("""
# π Advanced Data Processing & QR Code Generator
Transform your data into beautifully designed, sequenced QR codes with our cutting-edge processor.
""")
with gr.Tab("π URL Processing"):
url_input = gr.Textbox(
label="Enter URLs (comma or newline separated)",
lines=5,
placeholder="https://example1.com\nhttps://example2.com",
value=""
)
with gr.Tab("π File Input"):
file_input = gr.File(
label="Upload Files",
file_types=None, # Accept all file types
file_count="multiple"
)
with gr.Tab("π JSON Input"):
text_input = gr.TextArea(
label="Direct JSON Input",
lines=15,
placeholder="Paste your JSON data here...",
value=""
)
with gr.Row():
example_btn = gr.Button("π Load Example", variant="secondary")
clear_btn = gr.Button("ποΈ Clear", variant="secondary")
with gr.Row():
combine_data = gr.Checkbox(
label="Combine all data into sequence",
value=True,
info="Generate sequential QR codes for combined data"
)
process_btn = gr.Button(
"π Process & Generate QR",
variant="primary"
)
# Output components
output_json = gr.JSON(label="Processed Data")
output_gallery = gr.Gallery(
label="Generated QR Codes",
columns=3,
height=400,
show_label=True
)
output_text = gr.Textbox(
label="Processing Status",
interactive=False
)
with gr.Tab("πΌοΈ QR Code Viewport") as viewport_tab:
viewport_output = gr.HTML(label="QR Code Sequence Viewport")
enabled_qr_codes = gr.State([]) # To store the enabled/disabled state
# Load example data
def load_example():
example = {
"type": "product_catalog",
"items": [
{
"id": "123",
"name": "Premium Widget",
"description": "High-quality widget with advanced features",
"price": 299.99,
"category": "electronics",
"tags": ["premium", "featured", "new"]
},
{
"id": "456",
"name": "Basic Widget",
"description": "Reliable widget for everyday use",
"price": 149.99,
"category": "electronics",
"tags": ["basic", "popular"]
}
],
"metadata": {
"timestamp": datetime.now().isoformat(),
"version": "2.0",
"source": "example"
}
}
return json.dumps(example, indent=2)
def clear_input():
return "", None, "" # Clear url, files, text
def update_viewport(paths, enabled_states):
if not paths:
return "<p>No QR codes generated yet.</p>"
num_qr_codes = len(paths)
cols = math.ceil(math.sqrt(num_qr_codes)) # Calculate columns for a roughly square grid
cols = max(1, min(cols, 6)) # Limit max columns for small screens
rows = math.ceil(num_qr_codes / cols)
viewport_html = f'<div class="viewport-container" style="grid-template-columns: repeat({cols}, 1fr);">'.format(cols)
# Initialize enabledStates if it's empty (first load)
if not enabled_states and paths:
enabled_states = list(range(num_qr_codes)) # Enable all by default on first view
for i, path in enumerate(paths):
is_enabled = i in enabled_states
border = "border: 2px solid green;" if is_enabled else "border: 2px solid lightgray;"
opacity = "opacity: 1.0;" if is_enabled else "opacity: 0.5;"
viewport_html += f'<div class="viewport-item" id="qr_item_{i}">'
viewport_html += f'<img src="/file={path}" style="{border} {opacity}" alt="QR Code {i+1}">' # Use /file= for Gradio to serve static files
viewport_html += f'<label><input type="checkbox" data-index="{i}" {"checked" if is_enabled else ""} onchange="updateEnabledStates(this)"> Enable</label>'
viewport_html += '</div>'
viewport_html += '</div>'
return viewport_html
def process_inputs(urls, files, text, combine):
"""Process all inputs and generate QR codes"""
results = []
processing_status_messages = []
url_processor = EnhancedURLProcessor()
file_processor = EnhancedFileProcessor()
try:
# Process JSON input
if text and text.strip():
try:
json_data = json.loads(text)
# Wrap direct JSON input in a dictionary for consistency with file/URL output structure
results.append({
'source': 'json_input',
'extracted_data': json_data,
'timestamp': datetime.now().isoformat(),
'processing_notes': ['Parsed from direct JSON input.']
})
processing_status_messages.append("β
Successfully parsed direct JSON input.")
except json.JSONDecodeError as e:
processing_status_messages.append(f"β Invalid JSON format in text input: {str(e)}")
except Exception as e:
processing_status_messages.append(f"β Error processing direct JSON input: {str(e)}")
# Process URLs
if urls and urls.strip():
url_list = re.split(r'[,\n]', urls)
url_list = [url.strip() for url in url_list if url.strip()]
for url in url_list:
validation = url_processor.validate_url(url)
if validation['is_valid']:
processing_status_messages.append(f"π Fetching URL: {url}...")
content_result = url_processor.fetch_content(url)
if content_result:
results.append(content_result)
processing_status_messages.append(f"β
Fetched and processed URL: {url}")
else:
processing_status_messages.append(f"β Failed to fetch/process URL: {url}")
if validation['details'].get('final_url'):
processing_status_messages[-1] += f" (Redirected to {validation['details']['final_url']})"
else:
processing_status_messages.append(f"β οΈ Skipping invalid URL: {url} ({validation['message']})")
# Process files
if files:
for file in files:
processing_status_messages.append(f"π Processing file: {file.name}...")
file_results = file_processor.process_file(file)
if file_results:
results.extend(file_results)
processing_status_messages.append(f"β
Processed file: {file.name}")
else:
processing_status_messages.append(f"β Failed to process file: {file.name}")
# Generate QR codes
qr_paths = []
final_json_output = None
if results:
# Use the collected results (list of dicts) for QR code generation
qr_paths = generate_qr_codes(results, combine)
final_json_output = results # Show the structured data in the JSON output box
if qr_paths:
processing_status_messages.append(f"β
Successfully generated {len(qr_paths)} QR codes.")
else:
processing_status_messages.append("β Failed to generate QR codes.")
else:
processing_status_messages.append("β οΈ No valid content collected from inputs.")
except Exception as e:
logger.error(f"Overall processing error in process_inputs: {e}")
processing_status_messages.append(f"β An unexpected error occurred during processing: {str(e)}")
return (
final_json_output,
[str(path) for path in qr_paths], # Gradio Gallery expects list of paths (strings)
"\n".join(processing_status_messages) # Join status messages
)
def on_qr_generation(qr_paths_list):
# When QR codes are generated, update the state with the list of paths
# and initialize the enabled_qr_codes state with all indices enabled
num_qrs = len(qr_paths_list)
initial_enabled_states = list(range(num_qrs))
return qr_paths_list, initial_enabled_states # Return paths list and initial enabled state
# Link events
example_btn.click(load_example, inputs=[], outputs=text_input)
clear_btn.click(clear_input, inputs=[], outputs=[url_input, file_input, text_input]) # Clear all inputs
process_btn.click(
process_inputs,
inputs=[url_input, file_input, text_input, combine_data],
outputs=[output_json, output_gallery, output_text]
).then( # Chain a .then() to update the QR paths state and trigger viewport update
on_qr_generation,
inputs=[output_gallery], # Get the list of paths from the gallery output
outputs=[qr_code_paths, enabled_qr_codes] # Update the state variables
)
# The viewport tab's select event will trigger update_viewport to render the grid
viewport_tab.select(update_viewport, inputs=[qr_code_paths, enabled_qr_codes], outputs=[viewport_output])
# Add helpful documentation
gr.Markdown("""
### π Features
- **Enhanced URL Scraping**: Extracts HTML text, title, meta description, links, and attempts parsing JSON/XML from URLs based on content type.
- **Advanced File Processing**: Reads various text-based files (.txt, .md, .log etc.), HTML, XML, CSV, and attempts text extraction from common documents (.pdf, .docx, .rtf, .odt - *requires extra dependencies*).
- **Smart JSON Handling**: Parses valid JSON from direct input, files (.json or content), or URLs.
- **Archive Support**: Extracts and processes supported files from .zip, .tar, .gz archives.
- **Robust Encoding Detection**: Uses `chardet` for reliable character encoding identification.
- **Structured Output**: Provides a consistent JSON output format containing raw content (if applicable), extracted data, and processing notes for each processed item.
- **Sequential QR Codes**: Maintains data integrity across multiple codes by chunking the combined/individual processed data.
- **QR Code Viewport**: Visualize generated QR codes in a sequenced square grid with options to enable/disable individual codes for selective scanning/sharing.
- **Modern Design**: Clean, responsive interface with visual feedback.
### π‘ Tips
1. **URLs**: Enter multiple URLs separated by commas or newlines. The processor will attempt to fetch and structure the content based on its type.
2. **Files**: Upload any type of file. The processor will attempt to handle supported text-based files, archives (.zip, .tar, .gz), and specific document/structured formats.
3. **JSON**: Use the "Direct JSON Input" tab for pasting JSON data. The system also tries to detect JSON content in file uploads and URLs. Use the "Load Example" button to see a sample JSON structure.
4. **Dependencies**: Processing PDF, DOCX, RTF, and ODT files requires installing optional Python libraries. Check the console logs for warnings if a library is missing.
5. **QR Codes**: Choose whether to "Combine all data into sequence" or generate separate sequences for each input item.
6. **Processing**: Monitor the "Processing Status" box for real-time updates and notes about errors or processing steps.
7. **Output**: The "Processed Data" JSON box shows the structured data extracted from your inputs. The "Generated QR Codes" gallery shows the QR code images.
### π¨ Output Details
- The "Processed Data" JSON will be a list of dictionaries. Each dictionary represents one processed input (URL or file).
- Each item will have keys like `source`, `filename` (for files), `url` (for URLs), `mime_type`, `raw_content` (if readable), `extracted_data`, and `processing_notes`.
- `extracted_data` will contain the parsed/extracted content, structured according to the input type (e.g., dictionary for JSON, text for documents, list of rows for CSV, dictionary with title/text/links for HTML).
- `processing_notes` will list any issues encountered during extraction.
- Generated QR codes are saved in the `output/qr_codes` directory.
### βοΈ QR Code Viewport Instructions
1. Navigate to the **QR Code Viewport** tab after generating QR codes.
2. The generated QR codes will be displayed in a grid based on their total count.
3. Use the checkboxes below each QR code to enable or disable it for visual selection. Enabled codes have a green border and full opacity.
4. This viewport is currently for visualization and selection *within the UI*; it doesn't change the generated files themselves. You would manually select which physical QR codes to scan based on this view.
""")
return interface
def main():
"""Initialize and launch the application"""
try:
# Configure system settings
mimetypes.init()
# Create and launch interface
interface = create_modern_interface()
# Launch with configuration
interface.launch(
share=False,
debug=False, # Set to True for more verbose Gradio logging
show_error=True,
show_api=False
)
except Exception as e:
logger.error(f"Application startup error: {e}")
# Optionally print a user-friendly message before exiting
print(f"\nFatal Error: {e}\nCheck the logs for details.")
raise # Re-raise the exception to ensure the process exits if launch fails
if __name__ == "__main__":
main() |