Spaces:
Running
Running
File size: 111,928 Bytes
92e0d37 03ccbe1 771baf7 03ccbe1 90ff6aa 03ccbe1 90ff6aa 03ccbe1 4cff691 03ccbe1 4cff691 03ccbe1 4cff691 03ccbe1 90ff6aa 03ccbe1 90ff6aa 03ccbe1 f29606a 03ccbe1 f29606a 03ccbe1 90ff6aa 03ccbe1 92e0d37 03ccbe1 90ff6aa 771baf7 03ccbe1 90ff6aa 03ccbe1 771baf7 03ccbe1 90ff6aa 50921ef 92e0d37 90ff6aa 50921ef 90ff6aa 03ccbe1 c19dd51 90ff6aa c19dd51 90ff6aa c19dd51 90ff6aa c19dd51 90ff6aa 03ccbe1 90ff6aa f29606a 50921ef 90ff6aa 92e0d37 90ff6aa c19dd51 f29606a 90ff6aa 03ccbe1 50921ef 03ccbe1 f29606a 90ff6aa 03ccbe1 f29606a 03ccbe1 50921ef 03ccbe1 90ff6aa 03ccbe1 90ff6aa 03ccbe1 90ff6aa 03ccbe1 771baf7 90ff6aa 03ccbe1 50921ef 03ccbe1 90ff6aa 03ccbe1 771baf7 c19dd51 03ccbe1 90ff6aa 771baf7 03ccbe1 90ff6aa 03ccbe1 90ff6aa 03ccbe1 90ff6aa 03ccbe1 90ff6aa 03ccbe1 90ff6aa 03ccbe1 f29606a 03ccbe1 50921ef 03ccbe1 90ff6aa 03ccbe1 90ff6aa 03ccbe1 92e0d37 03ccbe1 f29606a 03ccbe1 f29606a 03ccbe1 f29606a 50921ef 03ccbe1 50921ef 90ff6aa 50921ef 90ff6aa 50921ef f29606a 90ff6aa 50921ef 90ff6aa 03ccbe1 771baf7 03ccbe1 50921ef 03ccbe1 50921ef c19dd51 90ff6aa c19dd51 50921ef c19dd51 50921ef c19dd51 50921ef c19dd51 50921ef 90ff6aa c19dd51 90ff6aa c19dd51 50921ef c19dd51 2e9ddb9 50921ef c19dd51 50921ef 90ff6aa c19dd51 90ff6aa c19dd51 90ff6aa 4cff691 90ff6aa c19dd51 90ff6aa c19dd51 4cff691 2e9ddb9 50921ef c19dd51 90ff6aa 50921ef c19dd51 50921ef 03ccbe1 92e0d37 03ccbe1 f29606a 03ccbe1 771baf7 03ccbe1 4cff691 c19dd51 90ff6aa c19dd51 03ccbe1 90ff6aa 03ccbe1 4cff691 03ccbe1 c19dd51 03ccbe1 90ff6aa 03ccbe1 90ff6aa 03ccbe1 f29606a 03ccbe1 90ff6aa 03ccbe1 f29606a 03ccbe1 771baf7 03ccbe1 771baf7 03ccbe1 f29606a 03ccbe1 90ff6aa f29606a 03ccbe1 f29606a 03ccbe1 f29606a 03ccbe1 90ff6aa 03ccbe1 f29606a 90ff6aa 03ccbe1 f29606a 03ccbe1 f29606a 03ccbe1 f29606a 03ccbe1 90ff6aa 92e0d37 03ccbe1 90ff6aa 03ccbe1 90ff6aa 03ccbe1 90ff6aa 03ccbe1 c19dd51 03ccbe1 90ff6aa f29606a 03ccbe1 f29606a 03ccbe1 f29606a 03ccbe1 90ff6aa 03ccbe1 90ff6aa 03ccbe1 90ff6aa 03ccbe1 90ff6aa 03ccbe1 4cff691 03ccbe1 90ff6aa 03ccbe1 90ff6aa 03ccbe1 90ff6aa 03ccbe1 771baf7 03ccbe1 90ff6aa 03ccbe1 771baf7 03ccbe1 90ff6aa 03ccbe1 90ff6aa 03ccbe1 f29606a 771baf7 03ccbe1 4cff691 03ccbe1 4cff691 c19dd51 03ccbe1 c19dd51 4cff691 c19dd51 03ccbe1 f29606a 4cff691 771baf7 03ccbe1 4cff691 03ccbe1 4cff691 c19dd51 4cff691 03ccbe1 4cff691 03ccbe1 c19dd51 4cff691 c19dd51 03ccbe1 4cff691 03ccbe1 4cff691 03ccbe1 92e0d37 03ccbe1 4cff691 03ccbe1 4cff691 c19dd51 90ff6aa c19dd51 03ccbe1 771baf7 03ccbe1 f29606a 03ccbe1 771baf7 03ccbe1 771baf7 4cff691 03ccbe1 4cff691 03ccbe1 4cff691 90ff6aa 03ccbe1 4cff691 03ccbe1 4cff691 03ccbe1 4cff691 03ccbe1 f29606a 03ccbe1 4cff691 771baf7 03ccbe1 92e0d37 03ccbe1 4cff691 03ccbe1 4cff691 03ccbe1 4cff691 03ccbe1 4cff691 771baf7 4cff691 771baf7 03ccbe1 4cff691 771baf7 03ccbe1 4cff691 771baf7 03ccbe1 771baf7 4cff691 03ccbe1 4cff691 03ccbe1 4cff691 f29606a 03ccbe1 4cff691 03ccbe1 4cff691 90ff6aa 03ccbe1 4cff691 03ccbe1 4cff691 03ccbe1 90ff6aa 03ccbe1 4cff691 03ccbe1 4cff691 90ff6aa 03ccbe1 4cff691 03ccbe1 4cff691 03ccbe1 4cff691 03ccbe1 90ff6aa 03ccbe1 4cff691 f29606a 03ccbe1 c28151b f29606a 2853bae 3a6d326 4cff691 3a6d326 4cff691 3a6d326 4cff691 386db61 2853bae 386db61 4cff691 386db61 2853bae 386db61 3a6d326 4cff691 386db61 4cff691 2853bae 4cff691 2853bae 386db61 90ff6aa 4cff691 90ff6aa 2853bae 90ff6aa 4cff691 2853bae 4cff691 90ff6aa 4cff691 90ff6aa 4cff691 386db61 90ff6aa 2853bae 4cff691 386db61 2853bae 4cff691 2853bae 4cff691 2853bae 90ff6aa 4cff691 2853bae 4cff691 90ff6aa 4cff691 2853bae 4cff691 2853bae 4cff691 2853bae 4cff691 90ff6aa 4cff691 90ff6aa 4cff691 90ff6aa 4cff691 3a6d326 4cff691 3a6d326 4cff691 3a6d326 4cff691 2853bae 4cff691 2853bae 03fc5c6 2bc3596 2853bae 3a6d326 2853bae 03fc5c6 3a6d326 4cff691 2853bae 3a6d326 2853bae 03ccbe1 90ff6aa 03ccbe1 3ce55cd 03ccbe1 3ce55cd 03ccbe1 90ff6aa 3ce55cd 03ccbe1 b74e3f5 90ff6aa b74e3f5 90ff6aa b74e3f5 c19dd51 03ccbe1 90ff6aa 771baf7 03ccbe1 771baf7 03ccbe1 90ff6aa 03ccbe1 3a6d326 03ccbe1 92e0d37 03ccbe1 92e0d37 771baf7 03ccbe1 90ff6aa 03ccbe1 2853bae 90ff6aa 4cff691 3a6d326 2853bae 3a6d326 2853bae 4cff691 03fc5c6 3a6d326 03fc5c6 f29606a 03fc5c6 771baf7 03fc5c6 771baf7 03fc5c6 771baf7 4cff691 03fc5c6 4cff691 f29606a 4cff691 771baf7 4cff691 771baf7 4cff691 f29606a 4cff691 f29606a 4cff691 03fc5c6 4cff691 f29606a 03ccbe1 03fc5c6 4cff691 03fc5c6 4cff691 03fc5c6 4cff691 771baf7 92e0d37 4cff691 771baf7 4cff691 03fc5c6 4cff691 7ca7938 4cff691 7ca7938 03fc5c6 4cff691 03fc5c6 4cff691 03fc5c6 4cff691 2853bae 03fc5c6 4cff691 03ccbe1 92e0d37 03ccbe1 92e0d37 03ccbe1 03fc5c6 771baf7 03ccbe1 90ff6aa 771baf7 03ccbe1 03fc5c6 3a6d326 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 |
import json
import os
import re
import time
import logging
import mimetypes
import zipfile
import tempfile
import chardet
import io
import csv
import xml.etree.ElementTree as ET
from datetime import datetime
from typing import List, Dict, Optional, Union, Tuple, Any
from pathlib import Path
from urllib.parse import urlparse, urljoin
import requests
import validators
import gradio as gr
from diskcache import Cache # Unused in provided code, kept for completeness
from bs4 import BeautifulSoup
from fake_useragent import UserAgent
from cleantext import clean # Unused in provided code, kept for completeness
import qrcode
from PIL import Image, ImageDraw, ImageFont # ImageFont may require pillow[extra]
import numpy as np # Unused in provided code, kept for completeness
import tarfile
import gzip
import math
import random
import pandas as pd
from requests.adapters import HTTPAdapter
from urllib3.util.retry import Retry
# Setup enhanced logging with more detailed formatting
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - [%(filename)s:%(lineno)d] - %(message)s',
handlers=[
logging.StreamHandler(),
logging.FileHandler('app.log', encoding='utf-8')
])
logger = logging.getLogger(__name__)
# Conditional imports for document processing
try:
from PyPDF2 import PdfReader
PDF_SUPPORT = True
except ImportError:
PDF_SUPPORT = False
logger.warning("PyPDF2 not installed. PDF file processing will be limited.")
try:
from docx import Document
DOCX_SUPPORT = True
except ImportError:
DOCX_SUPPORT = False
logger.warning("python-docx not installed. DOCX file processing will be limited.")
try:
from pyth.plugins.plaintext.writer import PlaintextWriter
from pyth.plugins.rtf15.reader import Rtf15Reader
RTF_SUPPORT = True
except ImportError:
RTF_SUPPORT = False
logger.warning("pyth not installed. RTF file processing will be limited.")
try:
from odf.opendocument import OpenDocumentText
from odf import text as odftext
ODT_SUPPORT = True
except ImportError:
ODT_SUPPORT = False
logger.warning("odfpy not installed. ODT file processing will be limited.")
# Ensure output directories exist with modern structure
OUTPUTS_DIR = Path('output')
QR_CODES_DIR = OUTPUTS_DIR / 'qr_codes'
TEMP_DIR = OUTPUTS_DIR / 'temp'
for directory in [OUTPUTS_DIR, QR_CODES_DIR, TEMP_DIR]:
directory.mkdir(parents=True, exist_ok=True)
class EnhancedURLProcessor:
"""Advanced URL processing with enhanced content extraction and recursive link following."""
def __init__(self):
# Use a real requests session with retry strategy
self.session = requests.Session()
retry_strategy = Retry(
total=3,
backoff_factor=1,
status_forcelist=[429, 500, 502, 503, 504],
allowed_methods=["HEAD", "GET"]
)
adapter = HTTPAdapter(max_retries=retry_strategy)
self.session.mount("http://", adapter)
self.session.mount("https://", adapter)
self.user_agent = UserAgent()
self.timeout = 15 # seconds
def validate_url(self, url: str) -> Dict[str, Any]:
"""Enhanced URL validation with accessibility check."""
if not validators.url(url):
return {'is_valid': False, 'message': 'Invalid URL format', 'details': 'URL must begin with http:// or https://'}
parsed = urlparse(url)
if not all([parsed.scheme, parsed.netloc]):
return {'is_valid': False, 'message': 'Incomplete URL', 'details': 'Missing scheme or domain'}
try:
# Use a HEAD request to check accessibility without downloading full content
headers = {'User-Agent': self.user_agent.random}
response = self.session.head(url, timeout=self.timeout, headers=headers, allow_redirects=True)
response.raise_for_status() # Raise HTTPError for bad responses (4xx or 5xx)
# Check content type if available in HEAD response
content_type = response.headers.get('Content-Type', '').split(';')[0].strip()
if not content_type or not (content_type.startswith('text/') or 'json' in content_type or 'xml' in content_type):
# Basic check if content type seems relevant for text extraction
logger.warning(f"URL {url} returned potentially irrelevant content type: {content_type}")
# Decide if this should invalidate the URL or just add a note
# For now, we'll allow fetching but add a note.
return {
'is_valid': True,
'message': 'URL is valid and accessible',
'details': {
'final_url': response.url, # Capture final URL after redirects
'content_type': content_type,
'server': response.headers.get('Server', 'N/A'),
'size': response.headers.get('Content-Length', 'N/A')
}
}
except requests.exceptions.RequestException as e:
return {'is_valid': False, 'message': 'URL not accessible', 'details': str(e)}
except Exception as e:
logger.error(f"Unexpected error during URL validation for {url}: {e}")
return {'is_valid': False, 'message': 'Unexpected validation error', 'details': str(e)}
def fetch_content(self, url: str, retry_count: int = 0) -> Optional[Dict[str, Any]]:
"""Enhanced content fetcher with retry mechanism and complete character extraction."""
try:
logger.info(f"Fetching content from URL: {url} (Attempt {retry_count + 1})")
headers = {'User-Agent': self.user_agent.random}
response = self.session.get(url, timeout=self.timeout, headers=headers, allow_redirects=True)
response.raise_for_status() # Raise HTTPError for bad responses (4xx or 5xx)
final_url = response.url # Capture potential redirects
content_type = response.headers.get('Content-Type', '').split(';')[0].strip()
# Attempt to detect encoding if not specified in headers
encoding = response.encoding # requests attempts to guess encoding
if encoding is None or encoding == 'ISO-8859-1': # Fallback if requests guess is default/uncertain
try:
encoding_detection = chardet.detect(response.content)
encoding = encoding_detection['encoding'] or 'utf-8'
logger.debug(f"Chardet detected encoding: {encoding} for {url}")
except Exception as e:
logger.warning(f"Chardet detection failed for {url}: {e}. Falling back to utf-8.")
encoding = 'utf-8'
raw_content = response.content.decode(encoding, errors='replace')
# Extract metadata
metadata = {
'original_url': url,
'final_url': final_url,
'timestamp': datetime.now().isoformat(),
'detected_encoding': encoding,
'content_type': content_type,
'content_length': len(response.content),
'headers': dict(response.headers),
'status_code': response.status_code
}
# Process based on content type
processed_extraction = self._process_web_content(raw_content, metadata['content_type'], final_url)
return {
'source': 'url',
'url': url, # Keep original URL as identifier for this step
'raw_content': raw_content,
'metadata': metadata,
'extracted_data': processed_extraction['data'],
'processing_notes': processed_extraction['notes']
}
except requests.exceptions.RequestException as e:
logger.error(f"Failed to fetch content from {url}: {e}")
return {
'source': 'url',
'url': url,
'raw_content': None,
'metadata': {'original_url': url, 'timestamp': datetime.now().isoformat(), 'status_code': getattr(e.response, 'status_code', None)},
'extracted_data': None,
'processing_notes': [f"Failed to fetch content: {str(e)}"]
}
except Exception as e:
logger.error(f"Unexpected error while fetching or processing URL {url}: {e}")
return {
'source': 'url',
'url': url,
'raw_content': raw_content if 'raw_content' in locals() else None,
'metadata': metadata if 'metadata' in locals() else {'original_url': url, 'timestamp': datetime.now().isoformat(), 'status_code': None},
'extracted_data': None,
'processing_notes': [f"Unexpected processing error: {str(e)}"]
}
def _process_web_content(self, content: str, content_type: str, base_url: str) -> Dict[str, Any]:
"""Process content based on detected content type"""
lower_content_type = content_type.lower()
notes = []
extracted_data: Any = None
try:
if 'text/html' in lower_content_type:
logger.debug(f"Processing HTML content from {base_url}")
extracted_data = self._process_html_content_enhanced(content, base_url)
notes.append("Processed as HTML")
elif 'application/json' in lower_content_type or 'text/json' in lower_content_type:
logger.debug(f"Processing JSON content from {base_url}")
try:
extracted_data = json.loads(content)
notes.append("Parsed as JSON")
except json.JSONDecodeError as e:
extracted_data = content
notes.append(f"Failed to parse as JSON: {e}")
logger.warning(f"Failed to parse JSON from {base_url}: {e}")
except Exception as e:
extracted_data = content
notes.append(f"Error processing JSON: {e}")
logger.error(f"Error processing JSON from {base_url}: {e}")
elif 'application/xml' in lower_content_type or 'text/xml' in lower_content_type or lower_content_type.endswith('+xml'):
logger.debug(f"Processing XML content from {base_url}")
try:
root = ET.fromstring(content)
xml_text = ET.tostring(root, encoding='unicode', method='xml')
extracted_data = xml_text
notes.append("Parsed as XML (text representation)")
except ET.ParseError as e:
extracted_data = content
notes.append(f"Failed to parse as XML: {e}")
logger.warning(f"Failed to parse XML from {base_url}: {e}")
except Exception as e:
extracted_data = content
notes.append(f"Error processing XML: {e}")
logger.error(f"Error processing XML from {base_url}: {e}")
elif 'text/plain' in lower_content_type or 'text/' in lower_content_type:
logger.debug(f"Processing Plain Text content from {base_url}")
extracted_data = content
notes.append("Processed as Plain Text")
else:
logger.debug(f"Unknown content type '{content_type}' from {base_url}. Storing raw content.")
extracted_data = content
notes.append(f"Unknown content type '{content_type}'. Stored raw text.")
except Exception as e:
logger.error(f"Unexpected error in _process_web_content for {base_url} ({content_type}): {e}")
extracted_data = content
notes.append(f"Unexpected processing error: {e}. Stored raw text.")
return {'data': extracted_data, 'notes': notes}
def _process_html_content_enhanced(self, content: str, base_url: str) -> Dict[str, Any]:
"""Process HTML content, preserving text, and extracting metadata and links."""
extracted: Dict[str, Any] = {
'title': None,
'meta_description': None,
'full_text': "",
'links': []
}
try:
soup = BeautifulSoup(content, 'html.parser')
if soup.title and soup.title.string:
extracted['title'] = soup.title.string.strip()
meta_desc = soup.find('meta', attrs={'name': 'description'})
if meta_desc and meta_desc.get('content'):
extracted['meta_description'] = meta_desc['content'].strip()
unique_links = set()
for a_tag in soup.find_all('a', href=True):
href = a_tag['href'].strip()
if href and not href.startswith(('#', 'mailto:', 'tel:', 'javascript:')):
text = a_tag.get_text().strip()
try:
absolute_url = urljoin(base_url, href)
if absolute_url not in unique_links:
extracted['links'].append({'text': text, 'url': absolute_url})
unique_links.add(absolute_url)
except Exception:
if validators.url(href) and href not in unique_links:
extracted['links'].append({'text': text, 'url': href})
unique_links.add(href)
elif urlparse(href).netloc and href not in unique_links:
extracted['links'].append({'text': text, 'url': href})
unique_links.add(href)
soup_copy = BeautifulSoup(content, 'html.parser')
for script_or_style in soup_copy(["script", "style"]):
script_or_style.extract()
text = soup_copy.get_text(separator='\n')
lines = text.splitlines()
cleaned_lines = [line.strip() for line in lines if line.strip()]
extracted['full_text'] = '\n'.join(cleaned_lines)
except Exception as e:
logger.error(f"Enhanced HTML processing error for {base_url}: {e}")
soup_copy = BeautifulSoup(content, 'html.parser')
for script_or_style in soup_copy(["script", "style"]):
script_or_style.extract()
extracted['full_text'] = soup_copy.get_text(separator='\n').strip()
extracted['processing_error'] = f"Enhanced HTML processing failed: {e}"
return extracted
def fetch_content_with_depth(self, url: str, max_steps: int = 0) -> Dict[str, Any]:
"""Fetches content from a URL and recursively follows links up to max_steps depth."""
if not isinstance(max_steps, int) or not (0 <= max_steps <= 10):
logger.error(f"Invalid max_steps value: {max_steps}. Must be an integer between 0 and 10.")
return {
'url': url,
'level': 0,
'fetch_result': None,
'linked_extractions': [],
'processing_notes': [f"Invalid max_steps value: {max_steps}. Must be an integer between 0 and 10."]
}
validation_result = self.validate_url(url)
if not validation_result['is_valid']:
logger.error(f"Initial URL validation failed for {url}: {validation_result['message']}")
return {
'url': url,
'level': 0,
'fetch_result': None,
'linked_extractions': [],
'processing_notes': [f"Initial URL validation failed: {validation_result['message']}"]
}
# Use a set to keep track of visited URLs during the crawl to avoid infinite loops
visited_urls = set()
return self._fetch_content_recursive(url, max_steps, current_step=0, visited_urls=visited_urls)
def _fetch_content_recursive(self, url: str, max_steps: int, current_step: int, visited_urls: set) -> Dict[str, Any]:
"""Recursive helper function to fetch content and follow links."""
if current_step > max_steps:
logger.debug(f"Depth limit ({max_steps}) reached for {url} at level {current_step}.")
return {
'url': url,
'level': current_step,
'fetch_result': None,
'linked_extractions': [],
'processing_notes': [f"Depth limit ({max_steps}) reached."]
}
# Normalize URL before checking visited set
normalized_url = url.rstrip('/') # Simple normalization
if normalized_url in visited_urls:
logger.debug(f"Skipping already visited URL: {url} at level {current_step}.")
return {
'url': url,
'level': current_step,
'fetch_result': None, # Indicate not fetched in this run
'linked_extractions': [],
'processing_notes': ["URL already visited in this crawl."]
}
visited_urls.add(normalized_url) # Mark as visited
logger.info(f"Processing URL: {url} at level {current_step}/{max_steps}")
fetch_result = self.fetch_content(url)
linked_extractions: List[Dict[str, Any]] = []
if fetch_result and fetch_result.get('extracted_data') and 'text/html' in fetch_result.get('metadata', {}).get('content_type', '').lower():
extracted_data = fetch_result['extracted_data']
links = extracted_data.get('links', [])
logger.info(f"Found {len(links)} potential links on {url} at level {current_step}. Proceeding to depth {current_step + 1}.")
if current_step < max_steps:
for link_info in links:
linked_url = link_info.get('url')
if linked_url:
# Ensure linked URL is absolute and potentially within the same domain
# Simple same-domain check (can be made more sophisticated)
try:
base_domain = urlparse(url).netloc
linked_domain = urlparse(linked_url).netloc
# Allow processing if domains match OR if linked_domain is empty (relative link)
if linked_domain and linked_domain != base_domain:
logger.debug(f"Skipping external link: {linked_url}")
continue # Skip external links
# Recursively call for linked URLs
linked_result = self._fetch_content_recursive(linked_url, max_steps, current_step + 1, visited_urls)
if linked_result:
linked_extractions.append(linked_result)
except Exception as e:
logger.warning(f"Error processing linked URL {linked_url} from {url}: {e}")
current_notes = fetch_result.get('processing_notes', []) if fetch_result else ['Fetch failed.']
if fetch_result and fetch_result.get('fetch_result') is not None: # Only add level note if fetch was attempted
if f"Processed at level {current_step}" not in current_notes:
current_notes.append(f"Processed at level {current_step}")
return {
'url': url,
'level': current_step,
'fetch_result': fetch_result,
'linked_extractions': linked_extractions,
'processing_notes': current_notes
}
class EnhancedFileProcessor:
"""Advanced file processing with enhanced content extraction"""
def __init__(self, max_file_size: int = 5 * 1024 * 1024 * 1024): # 5GB default
self.max_file_size = max_file_size
self.supported_extensions = {
'.txt', '.md', '.csv', '.json', '.xml', '.html', '.htm',
'.log', '.yml', '.yaml', '.ini', '.conf', '.cfg',
'.pdf', '.doc', '.docx', '.rtf', '.odt',
'.zip', '.tar', '.gz', '.bz2', '.7z', '.rar',
}
self.archive_extensions = {'.zip', '.tar', '.gz', '.bz2', '.7z', '.rar'}
def process_file(self, file) -> List[Dict]:
"""Process uploaded file with enhanced error handling and complete extraction"""
if not file or not hasattr(file, 'name'):
logger.warning("Received invalid file object.")
return []
dataset = []
# Gradio file object has a 'name' attribute which is the temporary path
file_path = Path(file.name)
if not file_path.exists():
logger.error(f"File path does not exist: {file_path}")
return [{
'source': 'file',
'filename': file.name if hasattr(file, 'name') else 'unknown',
'file_size': None,
'extracted_data': None,
'processing_notes': ['File path does not exist.']
}]
try:
file_size = file_path.stat().st_size
if file_size > self.max_file_size:
logger.warning(f"File '{file_path.name}' size ({file_size} bytes) exceeds maximum allowed size ({self.max_file_size} bytes).")
return [{
'source': 'file',
'filename': file_path.name,
'file_size': file_size,
'extracted_data': None,
'processing_notes': ['File size exceeds limit.']
}]
# Use a temporary directory for archive extraction
with tempfile.TemporaryDirectory() as temp_dir:
temp_dir_path = Path(temp_dir)
if file_path.suffix.lower() in self.archive_extensions:
dataset.extend(self._process_archive(file_path, temp_dir_path))
elif file_path.suffix.lower() in self.supported_extensions:
dataset.extend(self._process_single_file(file_path))
else:
logger.warning(f"Unsupported file type for processing: '{file_path.name}'. Attempting to read as plain text.")
try:
content_bytes = file_path.read_bytes()
encoding_detection = chardet.detect(content_bytes)
encoding = encoding_detection['encoding'] or 'utf-8'
raw_content = content_bytes.decode(encoding, errors='replace')
dataset.append({
'source': 'file',
'filename': file_path.name,
'file_size': file_size,
'mime_type': mimetypes.guess_type(file_path.name)[0] or 'unknown/unknown',
'extracted_data': {'plain_text': raw_content},
'processing_notes': ['Processed as plain text (unsupported extension).']
})
except Exception as e:
logger.error(f"Error reading or processing unsupported file '{file_path.name}' as text: {e}")
dataset.append({
'source': 'file',
'filename': file_path.name,
'file_size': file_size,
'mime_type': mimetypes.guess_type(file_path.name)[0] or 'unknown/unknown',
'extracted_data': None,
'processing_notes': [f'Unsupported file type and failed to read as text: {e}']
})
except Exception as e:
logger.error(f"Error processing file '{file_path.name}': {str(e)}")
dataset.append({
'source': 'file',
'filename': file_path.name,
'file_size': file_size if 'file_size' in locals() else None,
'extracted_data': None,
'processing_notes': [f'Overall file processing error: {str(e)}']
})
return dataset
def _is_archive(self, filepath: Union[str, Path]) -> bool:
"""Check if file is an archive"""
p = Path(filepath) if isinstance(filepath, str) else filepath
return p.suffix.lower() in self.archive_extensions
def _process_single_file(self, file_path: Path) -> List[Dict]:
"""Process a single file with enhanced character extraction and format-specific handling"""
dataset_entries = []
filename = file_path.name
file_size = file_path.stat().st_size
mime_type, _ = mimetypes.guess_type(file_path)
mime_type = mime_type or 'unknown/unknown'
file_extension = file_path.suffix.lower()
logger.info(f"Processing single file: '{filename}' ({mime_type}, {file_size} bytes)")
raw_content: Optional[str] = None
extracted_data: Any = None
processing_notes: List[str] = []
try:
content_bytes = file_path.read_bytes()
encoding_detection = chardet.detect(content_bytes)
encoding = encoding_detection['encoding'] or 'utf-8'
raw_content = content_bytes.decode(encoding, errors='replace')
is_explicit_json = mime_type == 'application/json' or file_extension == '.json'
looks_like_json = raw_content.strip().startswith('{') or raw_content.strip().startswith('[')
if is_explicit_json or looks_like_json:
try:
extracted_data = json.loads(raw_content)
processing_notes.append("Parsed as JSON.")
if not is_explicit_json:
processing_notes.append("Note: Content looked like JSON despite extension/mime.")
logger.warning(f"File '{filename}' identified as JSON content despite extension/mime.")
mime_type = 'application/json'
except json.JSONDecodeError as e:
processing_notes.append(f"Failed to parse as JSON: {e}.")
if is_explicit_json:
logger.error(f"Explicit JSON file '{filename}' has invalid format: {e}")
else:
logger.warning(f"Content of '{filename}' looks like JSON but failed to parse: {e}")
except Exception as e:
processing_notes.append(f"Error processing JSON: {e}.")
logger.error(f"Error processing JSON in '{filename}': {e}")
looks_like_xml = extracted_data is None and raw_content.strip().startswith('<') and raw_content.strip().endswith('>')
is_explicit_xml = extracted_data is None and (mime_type in ('application/xml', 'text/xml') or mime_type.endswith('+xml') or file_extension in ('.xml', '.xsd'))
if extracted_data is None and (is_explicit_xml or looks_like_xml):
try:
root = ET.fromstring(raw_content)
extracted_data = ET.tostring(root, encoding='unicode', method='xml')
processing_notes.append("Parsed as XML (text representation).")
if not is_explicit_xml:
processing_notes.append("Note: Content looked like XML despite extension/mime.")
if 'xml' not in mime_type: mime_type = 'application/xml'
except ET.ParseError as e:
processing_notes.append(f"Failed to parse as XML: {e}.")
if is_explicit_xml:
logger.error(f"Explicit XML file '{filename}' has invalid format: {e}")
else:
logger.warning(f"Content of '{filename}' looks like XML but failed to parse: {e}")
except Exception as e:
processing_notes.append(f"Error processing XML: {e}.")
logger.error(f"Error processing XML in '{filename}': {e}")
is_explicit_csv = extracted_data is None and (mime_type == 'text/csv' or file_extension == '.csv')
looks_like_csv = extracted_data is None and (',' in raw_content or ';' in raw_content) and ('\n' in raw_content or len(raw_content.splitlines()) > 1)
if extracted_data is None and (is_explicit_csv or looks_like_csv):
try:
dialect = 'excel'
try:
sample = '\n'.join(raw_content.splitlines()[:10])
if sample:
dialect = csv.Sniffer().sniff(sample).name
logger.debug(f"Sniffer detected CSV dialect: {dialect} for '{filename}'")
except csv.Error:
logger.debug(f"Sniffer failed to detect dialect for '{filename}', using 'excel'.")
dialect = 'excel'
csv_reader = csv.reader(io.StringIO(raw_content), dialect=dialect)
rows = list(csv_reader)
if rows:
max_rows_preview = 100
extracted_data = {
'headers': rows[0] if rows and rows[0] else None,
'rows': rows[1:max_rows_preview+1] if len(rows) > 1 else []
}
if len(rows) > max_rows_preview + 1:
processing_notes.append(f"CSV data rows truncated to {max_rows_preview}.")
processing_notes.append("Parsed as CSV.")
if not is_explicit_csv:
processing_notes.append("Note: Content looked like CSV despite extension/mime.")
mime_type = 'text/csv'
else:
extracted_data = "Empty CSV"
processing_notes.append("Parsed as empty CSV.")
if not is_explicit_csv:
processing_notes.append("Note: Content looked like CSV but was empty.")
except Exception as e:
processing_notes.append(f"Failed to parse as CSV: {e}.")
logger.warning(f"Failed to parse CSV from '{filename}': {e}")
if extracted_data is None:
try:
extracted_text = None
if file_extension == '.pdf' and PDF_SUPPORT:
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmp_file:
tmp_file.write(content_bytes)
temp_path = Path(tmp_file.name)
try:
reader = PdfReader(temp_path)
text_content = "".join(page.extract_text() or "" for page in reader.pages)
extracted_text = text_content
processing_notes.append("Extracted text from PDF.")
finally:
if temp_path.exists(): temp_path.unlink()
elif file_extension == '.docx' and DOCX_SUPPORT:
with tempfile.NamedTemporaryFile(delete=False, suffix='.docx') as tmp_file:
tmp_file.write(content_bytes)
temp_path = Path(tmp_file.name)
try:
document = Document(temp_path)
text_content = "\n".join(paragraph.text for paragraph in document.paragraphs)
extracted_text = text_content
processing_notes.append("Extracted text from DOCX.")
finally:
if temp_path.exists(): temp_path.unlink()
elif file_extension == '.rtf' and RTF_SUPPORT:
try:
# Need to read RTF content as text, not bytes, for pyth's Rtf15Reader
doc = Rtf15Reader.read(io.StringIO(raw_content))
text_content = PlaintextWriter.write(doc).getvalue()
extracted_text = text_content
processing_notes.append("Extracted text from RTF.")
except Exception as e:
processing_notes.append(f"RTF extraction error: {e}")
logger.warning(f"Failed to extract RTF text from '{filename}': {e}")
elif file_extension == '.odt' and ODT_SUPPORT:
with tempfile.NamedTemporaryFile(delete=False, suffix='.odt') as tmp_file:
tmp_file.write(content_bytes)
temp_path = Path(tmp_file.name)
try:
text_doc = OpenDocumentText(temp_path)
paragraphs = text_doc.getElementsByType(odftext.P)
text_content = "\n".join("".join(node.text for node in p.childNodes) for p in paragraphs)
extracted_text = text_content
processing_notes.append("Extracted text from ODT.")
finally:
if temp_path.exists(): temp_path.unlink()
elif file_extension in ['.doc', '.ppt', '.pptx', '.xls', '.xlsx']:
processing_notes.append(f"Automatic text extraction for {file_extension.upper()} not fully implemented.")
logger.warning(f"Automatic text extraction for {file_extension.upper()} not fully implemented for '{filename}'.")
if extracted_text is not None:
max_extracted_text_size = 10000
extracted_data = {'text': extracted_text[:max_extracted_text_size]}
if len(extracted_text) > max_extracted_text_size:
extracted_data['text'] += "..."
processing_notes.append("Extracted text truncated.")
except ImportError as e:
processing_notes.append(f"Missing dependency for document type ({e}). Cannot extract text.")
except Exception as e:
processing_notes.append(f"Error during document text extraction: {e}")
logger.warning(f"Error during document text extraction for '{filename}': {e}")
if extracted_data is None:
extracted_data = {'plain_text': raw_content}
processing_notes.append("Stored as plain text.")
if mime_type in ['unknown/unknown', 'application/octet-stream']:
guessed_text_mime, _ = mimetypes.guess_type('dummy.txt')
if guessed_text_mime: mime_type = guessed_text_mime
except Exception as e:
logger.error(f"Fatal error processing single file '{filename}': {e}")
processing_notes.append(f"Fatal processing error: {e}")
raw_content = None
extracted_data = None
entry = {
'source': 'file',
'filename': filename,
'file_size': file_size,
'mime_type': mime_type,
'created': datetime.fromtimestamp(file_path.stat().st_ctime).isoformat() if file_path.exists() else None,
'modified': datetime.fromtimestamp(file_path.stat().st_mtime).isoformat() if file_path.exists() else None,
'raw_content': raw_content,
'extracted_data': extracted_data,
'processing_notes': processing_notes
}
dataset_entries.append(entry)
return dataset_entries
def _process_archive(self, archive_path: Path, extract_to: Path) -> List[Dict]:
"""Process an archive file with enhanced extraction"""
dataset = []
archive_extension = archive_path.suffix.lower()
logger.info(f"Processing archive: '{archive_path.name}'")
try:
if archive_extension == '.zip':
if zipfile.is_zipfile(archive_path):
with zipfile.ZipFile(archive_path, 'r') as zip_ref:
for file_info in zip_ref.infolist():
# Prevent Zip Slip vulnerability
sanitized_filename = Path(file_info.filename).name # Takes only the base name
extracted_file_path = extract_to / sanitized_filename
if file_info.file_size > 0 and not file_info.filename.endswith('/'):
try:
# Use extract method with path to temp_dir for safety
zip_ref.extract(file_info, path=extract_to)
extracted_file_path = extract_to / file_info.filename # Get the actual extracted path
if extracted_file_path.suffix.lower() in self.supported_extensions and not self._is_archive(extracted_file_path):
dataset.extend(self._process_single_file(extracted_file_path))
elif extracted_file_path.suffix.lower() in self.archive_extensions:
logger.info(f"Found nested archive '{file_info.filename}', processing recursively.")
dataset.extend(self._process_archive(extracted_file_path, extract_to))
else:
logger.debug(f"Skipping unsupported file in archive: '{file_info.filename}'")
except Exception as e:
logger.warning(f"Error extracting/processing file '{file_info.filename}' from zip '{archive_path.name}': {e}")
finally:
# Clean up the extracted file immediately
if extracted_file_path.exists():
try:
extracted_file_path.unlink()
except OSError as e:
logger.warning(f"Failed to clean up extracted file {extracted_file_path}: {e}")
else:
logger.error(f"'{archive_path.name}' is not a valid zip file.")
elif archive_extension in ('.tar', '.gz', '.tgz'): # .tgz is often tar.gz
try:
mode = 'r'
if archive_extension in ('.tar.gz', '.tgz'): mode = 'r:gz' # Handle .tar.gz and .tgz
with tarfile.open(archive_path, mode) as tar_ref:
for member in tar_ref.getmembers():
if member.isfile():
# Prevent Tar Slip vulnerability
sanitized_filename = Path(member.name).name # Takes only the base name
extracted_file_path = extract_to / sanitized_filename
try:
# Use extractfile method and write manually for better control/safety
member_file = tar_ref.extractfile(member)
if member_file:
with open(extracted_file_path, 'wb') as outfile:
outfile.write(member_file.read())
member_file.close() # Close the BytesIO object
if extracted_file_path.suffix.lower() in self.supported_extensions and not self._is_archive(extracted_file_path):
dataset.extend(self._process_single_file(extracted_file_path))
elif extracted_file_path.suffix.lower() in self.archive_extensions:
logger.info(f"Found nested archive '{member.name}', processing recursively.")
dataset.extend(self._process_archive(extracted_file_path, extract_to))
else:
logger.warning(f"Could not get file-like object for {member.name} from tar.")
except Exception as e:
logger.warning(f"Error extracting/processing file '{member.name}' from tar '{archive_path.name}': {e}")
finally:
# Clean up the extracted file immediately
if extracted_file_path.exists():
try:
extracted_file_path.unlink()
except OSError as e:
logger.warning(f"Failed to clean up extracted file {extracted_file_path}: {e}")
except tarfile.TarError as e:
logger.error(f"Error processing TAR archive '{archive_path.name}': {e}")
elif archive_extension == '.gz': # Handle standalone .gz (single file compression)
extracted_name = archive_path.stem # Get filename without .gz
extracted_path = extract_to / extracted_name
try:
with gzip.open(archive_path, 'rb') as gz_file, open(extracted_path, 'wb') as outfile:
outfile.write(gz_file.read())
# Process the extracted file
if extracted_path.suffix.lower() in self.supported_extensions and not self._is_archive(extracted_path):
dataset.extend(self._process_single_file(extracted_path))
elif extracted_path.suffix.lower() in self.archive_extensions:
logger.info(f"Found nested archive '{extracted_name}', processing recursively.")
dataset.extend(self._process_archive(extracted_path, extract_to))
else:
logger.debug(f"Skipping unsupported file (from gz): '{extracted_name}'")
except gzip.BadGzipFile as e:
logger.error(f"Error processing GZIP file '{archive_path.name}': {e}")
except Exception as e:
logger.error(f"Error extracting/processing from GZIP '{archive_path.name}': {e}")
finally:
# Clean up the extracted file immediately
if extracted_path.exists():
try:
extracted_path.unlink()
except OSError as e:
logger.warning(f"Failed to clean up extracted file {extracted_path}: {e}")
elif archive_extension in ('.bz2', '.7z', '.rar'):
logger.warning(f"Support for {archive_extension} archives is not yet fully implemented and requires external tools/libraries.")
except Exception as e:
logger.error(f"Overall archive processing error for '{archive_path.name}': {e}")
return dataset
def chunk_data(self, data: Union[Dict, List], max_size: int = 2953) -> List[Dict]:
"""Enhanced data chunking with sequence metadata"""
try:
# Ensure data is a list of items for consistent chunking
if not isinstance(data, list):
logger.warning("Data for chunking is not a list. Wrapping it in a list.")
data_list = [data]
else:
data_list = data
# JSON dump the entire list first
json_str = json.dumps(data_list, ensure_ascii=False, separators=(',', ':'))
total_length = len(json_str)
# Estimate overhead for metadata + some buffer
# Example metadata: {"idx":0,"tc":1,"tl":1000,"hash":1234567890,"data":"..."}
# A rough estimate of the metadata string length
# Assuming max 5 digits for idx/tc, 10 for tl, 10 for hash, plus keys, colons, commas, quotes
# {"idx":NNNNN,"tc":NNNNN,"tl":NNNNNNNNNN,"hash":NNNNNNNNNN,"data":""}
# ~ 7 + 5 + 6 + 5 + 6 + 10 + 7 + 10 + 7 + 0 + 2 + 4*3 (commas/colons) + 2*2 (quotes) = ~ 80-100 characters
# Let's use a slightly safer estimate
overhead_estimate = len(json.dumps({"idx": 99999, "tc": 99999, "tl": 9999999999, "hash": 9999999999, "data": ""}, separators=(',', ':'))) + 50 # Add buffer
# Max QR code capacity for alphanumeric is higher than byte/binary.
# Max size 2953 is for bytes. For alphanumeric, it's 4296.
# We are encoding JSON (mostly alphanumeric, but can contain non-ASCII).
# Using byte capacity (2953) is safer. Let's stick to 2953 as the max_size input.
effective_chunk_size = max_size - overhead_estimate
if effective_chunk_size <= 0:
logger.error(f"Max QR size ({max_size}) is too small for metadata overhead ({overhead_estimate}). Cannot chunk.")
return []
if total_length <= effective_chunk_size:
# Single chunk case
chunk_data = json_str
chunk = {
"idx": 0,
"tc": 1,
"tl": total_length,
"hash": hash(chunk_data) & 0xFFFFFFFF, # Use a simple hash
"data": chunk_data
}
return [chunk]
# Multi-chunk case
num_chunks = math.ceil(total_length / effective_chunk_size)
chunks = []
current_pos = 0
for i in range(num_chunks):
end_pos = min(current_pos + effective_chunk_size, total_length)
chunk_data_str = json_str[current_pos:end_pos]
chunk = {
"idx": i,
"tc": num_chunks,
"tl": total_length,
"hash": hash(chunk_data_str) & 0xFFFFFFFF, # Hash each chunk
"data": chunk_data_str
}
chunks.append(chunk)
current_pos = end_pos
if current_pos < total_length:
logger.error(f"Chunking logic error: Only processed {current_pos} of {total_length} characters.")
# This should not happen with ceil and min, but as a safeguard
return [] # Indicate failure
logger.info(f"Chunked data into {num_chunks} chunks for QR codes.")
return chunks
except Exception as e:
logger.error(f"Error chunking data: {e}")
return []
def generate_stylish_qr(data: Union[str, Dict],
filename: str,
size: int = 10,
border: int = 4,
fill_color: str = "#000000",
back_color: str = "#FFFFFF") -> str:
"""Generate a stylish QR code with enhanced visual appeal"""
try:
qr = qrcode.QRCode(
version=None, # Let the library determine the optimal version
error_correction=qrcode.constants.ERROR_CORRECT_M, # Medium error correction
box_size=size,
border=border
)
# Data to encode should be a string, typically the JSON chunk
if isinstance(data, dict):
# Ensure it's dumped to a string if it's a dict chunk
data_to_encode = json.dumps(data, ensure_ascii=False, separators=(',', ':'))
else:
# Assume it's already the string data chunk
data_to_encode = str(data)
qr.add_data(data_to_encode)
qr.make(fit=True) # Fit the QR code size to the data
qr_image = qr.make_image(fill_color=fill_color, back_color=back_color)
# qr_image = qr_image.convert('RGBA') # Conversion might not be needed for simple fill/back colors
# Optional: Add a simple gradient overlay for style (can be resource intensive)
# try:
# gradient = Image.new('RGBA', qr_image.size, (0, 0, 0, 0))
# draw = ImageDraw.Draw(gradient)
# # Example: slight horizontal fade
# for i in range(qr_image.width):
# alpha = int(255 * (i/qr_image.width) * 0.05) # 5% fade
# draw.line([(i, 0), (i, qr_image.height)], fill=(0, 0, 0, alpha))
# final_image = Image.alpha_composite(qr_image, gradient)
# except Exception as e:
# logger.warning(f"Failed to add gradient overlay to QR code: {e}. Using plain QR.")
# final_image = qr_image
# Using the plain image for simplicity and performance unless gradient is crucial
final_image = qr_image
output_path = QR_CODES_DIR / filename
# Use PNG for lossless quality, 90 quality is for JPEGs but harmless here
final_image.save(output_path, format='PNG')
return str(output_path)
except Exception as e:
logger.error(f"QR generation error: {e}")
return ""
def generate_qr_codes(data: List[Dict], combined: bool = True) -> List[str]:
"""Generate QR codes with enhanced visual appeal and metadata"""
# Ensure data is a list of dictionaries as expected
if not isinstance(data, list):
logger.error("generate_qr_codes received data that is not a list.")
return []
if not all(isinstance(item, dict) for item in data):
logger.error("generate_qr_codes received a list containing non-dictionary items.")
return []
try:
file_processor = EnhancedFileProcessor() # Use the processor for chunking
paths = []
if combined:
# Chunk the entire list of data dictionaries
chunks = file_processor.chunk_data(data)
if not chunks:
logger.warning("No chunks generated for combined data.")
return []
for i, chunk in enumerate(chunks):
# Filename includes chunk index and total chunks
filename = f'combined_qr_{int(time.time())}_{i+1}_of_{len(chunks)}.png'
qr_path = generate_stylish_qr(
data=chunk, # Pass the chunk dictionary
filename=filename,
fill_color="#1a365d",
back_color="#ffffff"
)
if qr_path:
paths.append(qr_path)
else:
logger.warning(f"Failed to generate QR for combined chunk {i+1}/{len(chunks)}.")
else:
# Chunk each item individually
if data:
for idx, item in enumerate(data):
# Chunk the single item (wrapped in a list for chunk_data consistency)
chunks = file_processor.chunk_data([item]) # Pass item as a list
if not chunks:
logger.warning(f"No chunks generated for item {idx+1}.")
continue
for chunk_idx, chunk in enumerate(chunks):
# Filename includes item index, chunk index, and total chunks for this item
filename = f'item_{idx+1}_chunk_{chunk_idx+1}_of_{len(chunks)}_{int(time.time())}.png'
qr_path = generate_stylish_qr(
data=chunk, # Pass the chunk dictionary
filename=filename,
fill_color="#1a365d",
back_color="#ffffff"
)
if qr_path:
paths.append(qr_path)
else:
logger.warning(f"Failed to generate QR for item {idx+1} chunk {chunk_idx+1}/{len(chunks)}.")
else:
logger.warning("No items in data list to process individually for QR codes.")
logger.info(f"Generated {len(paths)} QR codes.")
return paths
except Exception as e:
logger.error(f"Error generating QR codes: {e}")
return []
# --- Chatbot Logic ---
def respond_to_chat(
message: str,
chat_history: List[Tuple[str, str]],
chatbot_data: Optional[List[Dict]],
current_filtered_df_state: Optional[pd.DataFrame]
) -> Tuple[List[Tuple[str, str]], Optional[List[Dict]], Optional[pd.DataFrame]]:
"""
Responds to user chat messages based on the loaded JSON data.
Manages and returns the state of the filtered DataFrame.
"""
# Initialize chat_history if it's None (Gradio might pass None initially)
if chat_history is None:
chat_history = []
if chatbot_data is None or not chatbot_data:
chat_history.append((message, "Please process some data first using the other tabs before chatting."))
return chat_history, chatbot_data, current_filtered_df_state # Return existing state
# Append user message to history immediately
chat_history.append((message, None)) # Use None as a placeholder for the assistant's response
response = ""
lower_message = message.lower().strip()
# Initialize new_filtered_df_state with the current state to preserve it unless a filter changes it
new_filtered_df_state = current_filtered_df_state
df = None
try:
# Attempt to create a DataFrame from the full chatbot_data for analysis
# This flattens the structure for easier querying with pandas
flat_data = []
def flatten_item(d, parent_key='', sep='_'):
items = {}
if isinstance(d, dict):
for k, v in d.items():
new_key = parent_key + sep + k if parent_key else k
if isinstance(v, (dict, list)):
# Recursively flatten nested dicts/lists
nested_items = flatten_item(v, new_key, sep=sep)
items.update(nested_items)
else:
# Add primitive values directly
items[new_key] = v
elif isinstance(d, list):
# Flatten list items, creating keys like parent_key_0, parent_key_1, etc.
for i, elem in enumerate(d):
nested_items = flatten_item(elem, f'{parent_key}{sep}{i}' if parent_key else str(i), sep=sep)
items.update(nested_items)
# If d is a primitive (int, str, bool, None), it won't add anything here, which is fine
# as primitives are handled in the dict/list branches.
return items
# Process each top-level item in chatbot_data
for i, item in enumerate(chatbot_data):
if isinstance(item, dict):
# Flatten the entire dictionary item
flat_item = flatten_item(item)
flat_data.append(flat_item)
# If chatbot_data contains non-dict top-level items, flatten them too
elif isinstance(item, (list, str, int, float, bool, type(None))):
flat_data.append({'item_value': item}) # Wrap primitives in a dict
except Exception as e:
# Handle exceptions that may occur during processing
response = f"An error occurred: {str(e)}"
chat_history.append((message, response)) # Append error message to chat history
if flat_data:
try:
# Create DataFrame. Use errors='ignore' for columns with mixed types that can't be coerced
df = pd.DataFrame(flat_data)
# Convert object columns to string type explicitly to avoid future warnings/errors
for col in df.columns:
if df[col].dtype == 'object':
df[col] = df[col].astype(str)
logger.debug(f"Created DataFrame with shape: {df.shape}")
logger.debug(f"DataFrame columns: {list(df.columns)}")
except Exception as e:
logger.warning(f"Could not create pandas DataFrame from processed data: {e}. Falling back to manual processing.")
df = None
else:
logger.warning("Flattened data is empty. Cannot create DataFrame.")
df = None
except Exception as e:
logger.error(f"Error during DataFrame creation from chatbot_data: {e}")
df = None
response = f"An error occurred while preparing data for analysis: {e}"
# --- Complex Queries and Analysis ---
# These operations should primarily act on the FULL dataframe 'df'
# unless the user explicitly asks about the 'filtered' data.
# The filter command itself updates `new_filtered_df_state`.
if df is not None and not response: # Proceed with analysis if DataFrame exists and no error yet
# List available columns (from the full DataFrame)
if "what columns are available" in lower_message or "list columns" in lower_message:
response = f"The available columns in the full dataset are: {', '.join(df.columns)}"
# Describe a specific column (from the full DataFrame)
match = re.search(r'describe column (\w+)', lower_message)
if match:
column_name = match.group(1)
if column_name in df.columns:
# Handle non-numeric describe gracefully
try:
description = df[column_name].describe().to_string()
response = f"Description for column '{column_name}':\n```\n{description}\n```"
except Exception as e:
response = f"Could not generate description for column '{column_name}': {e}"
logger.warning(f"Error describing column '{column_name}': {e}")
else:
response = f"I couldn't find a column named '{column_name}'. Available columns are: {', '.join(df.columns)}"
# How many unique values in a column? (from the full DataFrame)
match = re.search(r'how many unique values in (\w+)', lower_message)
if match:
column_name = match.group(1)
if column_name in df.columns:
try:
unique_count = df[column_name].nunique()
response = f"There are {unique_count} unique values in the '{column_name}' column (in the full dataset)."
except Exception as e:
response = f"Could not count unique values for column '{column_name}': {e}"
logger.warning(f"Error counting unique values for column '{column_name}': {e}")
else:
response = f"I couldn't find a column named '{column_name}' in the data. Available columns are: {', '.join(df.columns)}"
# What is the average/sum/min/max of a numeric column? (from the full DataFrame)
match = re.search(r'what is the (average|sum|min|max) of (\w+)', lower_message)
if match:
operation, column_name = match.groups()
if column_name in df.columns:
try:
# Attempt to convert to numeric, coercing errors to NaN, then drop NaNs
numeric_col = pd.to_numeric(df[column_name], errors='coerce').dropna()
if not numeric_col.empty:
if operation == 'average':
result = numeric_col.mean()
response = f"The average of '{column_name}' is {result:.2f}."
elif operation == 'sum':
result = numeric_col.sum()
response = f"The sum of '{column_name}' is {result:.2f}."
elif operation == 'min':
result = numeric_col.min()
response = f"The minimum of '{column_name}' is {result}."
elif operation == 'max':
result = numeric_col.max()
response = f"The maximum of '{column_name}' is {result}."
else:
response = "I can calculate average, sum, min, or max." # Should not reach here due to regex
else:
response = f"The column '{column_name}' does not contain numeric values that I can analyze."
except Exception as e:
response = f"An error occurred while calculating the {operation} of '{column_name}': {e}"
logger.error(f"Error calculating {operation} for column '{column_name}': {e}")
else:
response = f"I couldn't find a column named '{column_name}'. Available columns are: {', '.join(df.columns)}"
# Enhanced Filter data based on more complex conditions
# This section *updates* `new_filtered_df_state` based on the filter command.
# It should filter from the *full* dataframe (`df`).
filter_match = re.search(
r'(?:filter|show items|show me items|find entries|select items|get items)\s+' # Optional action phrases
r'(?:where|by|for|with|if)\s+' # Keyword indicating condition
r'(\w+)\s+' # Column name
r'(is|equals?|==|!=|>=?|<=?|contains?|starts with|ends with)\s+' # Operator
r'([\'"]?[\w\s.-]+[\'"]?)', # Value (allows spaces, dots, hyphens if quoted, or single words)
lower_message
)
if filter_match:
column_name, operator, value_str = filter_match.groups()
column_name = column_name.strip()
operator = operator.strip().lower()
value_str = value_str.strip().strip("'\"")
logger.info(f"Filter request: Column='{column_name}', Operator='{operator}', Value='{value_str}'")
if df is None:
response = "No data available to filter. Please process data first."
new_filtered_df_state = None # Ensure state is None if no data
elif column_name not in df.columns:
response = f"I couldn't find a column named '{column_name}'. Available columns are: {', '.join(df.columns)}"
new_filtered_df_state = None # Clear previous filter if column not found
else:
# Always filter from the original full dataframe 'df'
active_df_to_filter = df.copy()
col_series_original = active_df_to_filter[column_name] # Use original series for type checks
try:
# Attempt to infer value type for comparison and prepare column series
target_value: Any
condition = None # Initialize condition
# Handle numeric comparisons
if operator in ['>', '>=', '<', '<=', '==', '!=']:
try:
# Try converting *both* column and value to numeric
col_series_numeric = pd.to_numeric(col_series_original, errors='coerce')
target_value = float(value_str)
# Apply numeric condition only where conversion was successful (not NaN)
if operator == '==': condition = col_series_numeric == target_value
elif operator == '!=': condition = col_series_numeric != target_value
elif operator == '>': condition = col_series_numeric > target_value
elif operator == '>=': condition = col_series_numeric >= target_value
elif operator == '<': condition = col_series_numeric < target_value
elif operator == '<=': condition = col_series_numeric <= target_value
# Ensure condition is a boolean Series of the same index as the DataFrame
if condition is not None:
condition = condition.fillna(False) # Treat NaNs in numeric column as not matching
except ValueError:
response = f"For numeric comparison on column '{column_name}', '{value_str}' is not a valid number."
target_value = None # Error case
condition = None # Clear condition on error
# Handle string comparisons (includes 'is', 'equals', '!=', 'contains', 'starts with', 'ends with')
elif operator in ['is', 'equals', '==', '!=', 'contains', 'contain', 'starts with', 'ends with']:
# Ensure column is treated as string for these operations
col_series_string = col_series_original.astype(str).str.lower()
target_value = str(value_str).lower() # Case-insensitive comparison
if operator in ['is', 'equals', '==']:
condition = col_series_string == target_value
elif operator == '!=':
condition = col_series_string != target_value
elif operator in ['contains', 'contain']:
condition = col_series_string.str.contains(target_value, na=False) # na=False treats NaN strings as not containing
elif operator == 'starts with':
condition = col_series_string.str.startswith(target_value, na=False)
elif operator == 'ends with':
condition = col_series_string.str.endswith(target_value, na=False)
# else: condition remains None for unsupported string ops (should be caught by regex)
# Handle boolean comparisons (if column type is bool or value looks like bool)
elif operator in ['is', 'equals', '==', '!='] and (pd.api.types.is_bool_dtype(col_series_original) or value_str.lower() in ['true', 'false']):
try:
col_series_bool = col_series_original.astype(bool) # Attempt to convert column to bool
target_value = value_str.lower() == 'true' # Convert value string to bool
if operator in ['is', 'equals', '==']:
condition = col_series_bool == target_value
elif operator == '!=':
condition = col_series_bool != target_value
# Ensure condition is boolean Series
if condition is not None:
condition = condition.fillna(False) # Treat NaNs/errors in bool conversion as not matching
except ValueError:
response = f"For boolean comparison on column '{column_name}', '{value_str}' is not a valid boolean value (true/false)."
target_value = None
condition = None
else:
# If none of the above types matched, the operator is likely invalid for the column type
response = f"Unsupported operator '{operator}' for column '{column_name}'. Please check column type or operator."
condition = None
if condition is not None:
# Apply condition to the active_df_to_filter (which is a copy of the full df)
filtered_results_df = active_df_to_filter[condition]
if not filtered_results_df.empty:
new_filtered_df_state = filtered_results_df # Update state with new filter result
num_results = len(filtered_results_df)
preview_rows = min(num_results, 5)
preview_cols = min(len(filtered_results_df.columns), 5)
# Select only the first `preview_cols` columns for the preview
preview_df = filtered_results_df.head(preview_rows).iloc[:, :preview_cols]
preview_str = preview_df.to_string(index=False)
response = (f"Found {num_results} items where '{column_name}' {operator} '{value_str}'.\n"
f"Here's a preview (first {preview_rows} rows, first {preview_cols} columns):\n```\n{preview_str}\n```\n"
f"The full filtered dataset ({num_results} items) is now available for download using the 'Download Filtered JSON' button.")
else:
new_filtered_df_state = pd.DataFrame() # Store empty DF for "no results"
response = f"No items found where '{column_name}' {operator} '{value_str}'."
# If condition is None (e.g. bad operator or type mismatch error) and response not already set, set generic invalid op message.
elif not response: # Avoid overwriting specific error from type check
response = f"Unsupported operator '{operator}' for column '{column_name}'. Please check column type or operator."
new_filtered_df_state = None
except ValueError as ve: # Specifically catch ValueError for target_value conversion
response = f"Invalid value '{value_str}' for comparison on column '{column_name}'. {ve}"
new_filtered_df_state = None # Clear on value error
logger.warning(f"ValueError during filter: {ve}")
except Exception as e:
new_filtered_df_state = None # Clear on other errors
response = f"An error occurred while applying the filter: {e}"
logger.error(f"Error applying filter (column='{column_name}', op='{operator}', val='{value_str}'): {e}")
# If the message was a filter, new_filtered_df_state is now set (or None/empty if error/no results)
# --- End of Enhanced Filter Logic ---
# If `response` is still empty, it means no filter query was matched by the filter_match regex.
# In this case, new_filtered_df_state (initialized from current_filtered_df_state) remains unchanged.
# Request structured output (e.g., as CSV or simplified JSON)
# This section should act on the *original* df unless specifically asked for filtered data export.
# The new download buttons handle filtered data export separately.
# Let's assume for now it acts on the original df, and a separate command would be needed for "export filtered data"
# If no filter query matched, and no other specific df query matched,
# then `response` might still be empty. `new_filtered_df_state` will be the same as `current_filtered_df_state`.
# The general queries below should not reset `new_filtered_df_state` unless it's a "clear" command.
elif "output as csv" in lower_message or "export as csv" in lower_message:
if df is not None and not df.empty:
csv_output = df.to_csv(index=False)
response = f"Here is the data in CSV format:\n```csv\n{csv_output[:1000]}...\n```\n(Output truncated for chat display)"
else:
response = "There is no data available to output as CSV."
elif "output as json" in lower_message or "export as json" in lower_message: # Note: "export as json" is different from download buttons
if df is not None and not df.empty:
json_output = df.to_json(orient='records', indent=2)
response = f"Here is the data in JSON format:\n```json\n{json_output[:1000]}...\n```\n(Output truncated for chat display)"
else:
response = "There is no data available to output as JSON."
# --- General Queries (if no DataFrame or specific query matched AND no filter was applied in this turn) ---
# These should not clear new_filtered_df_state unless it's a "clear chat"
if not response: # Only enter if no response has been generated by DataFrame/filter logic
if "how many items" in lower_message or "number of items" in lower_message:
# Check filtered state first, then full df, then raw chatbot_data list
if new_filtered_df_state is not None and not new_filtered_df_state.empty:
response = f"The currently filtered dataset has {len(new_filtered_df_state)} items."
if df is not None:
response += f" The original dataset has {len(df)} items."
elif df is not None: # Check df from original chatbot_data
response = f"There are {len(df)} items in the processed data."
elif isinstance(chatbot_data, list): # Fallback if df creation failed but chatbot_data is list
response = f"There are {len(chatbot_data)} top-level items in the processed data (not in DataFrame)."
elif isinstance(chatbot_data, dict):
response = "The processed data is a single dictionary, not a list of items."
else:
response = "The processed data is not a standard list or dictionary structure."
elif "what is the structure" in lower_message or "tell me about the data" in lower_message:
# Describe filtered data structure if available, otherwise full data structure
if new_filtered_df_state is not None and not new_filtered_df_state.empty:
response = f"The filtered data is a table with {len(new_filtered_df_state)} rows and columns: {', '.join(new_filtered_df_state.columns)}. "
if df is not None:
response += f"The original data has columns: {', '.join(df.columns)}."
else:
response += "Original data structure is not tabular."
elif df is not None:
response = f"The data is a table with {len(df)} rows and columns: {', '.join(df.columns)}."
elif isinstance(chatbot_data, list) and chatbot_data:
sample_item = chatbot_data[0]
response = f"The data is a list containing {len(chatbot_data)} items. The first item has the following top-level keys: {list(sample_item.keys())}."
elif isinstance(chatbot_data, dict):
response = f"The data is a dictionary with the following top-level keys: {list(chatbot_data.keys())}."
else:
response = "The processed data is not a standard list or dictionary structure that I can easily describe."
# "show me" without a filter condition might be ambiguous.
# Let's assume it refers to the original data or provide guidance.
elif "show me" in lower_message or "get me" in lower_message or "extract" in lower_message:
# This specific 'show me' without 'where' should not trigger a filter or clear existing filter state.
# It's a general request for data, which is too broad. Guide the user.
response = "If you want to filter the data, please use a phrase like 'show items where column_name is value'. If you want to see the raw data, consider using the download buttons."
# --- Speculation about Modifications ---
# These responses are purely informative and do not modify data or state.
elif "how can i modify" in lower_message or "how to change" in lower_message or "can i add" in lower_message or "can i remove" in lower_message:
response = "I cannot directly modify the data here, but I can tell you how you *could* modify it programmatically. What kind of change are you considering (e.g., adding an item, changing a value, removing a field)?"
elif "add a field" in lower_message or "add a column" in lower_message:
response = "To add a field (or column if the data is tabular), you would typically iterate through each item (or row) in the data and add the new key-value pair. For example, adding a 'status' field with a default value."
elif "change a value" in lower_message or "update a field" in lower_message:
response = "To change a value, you would need to identify the specific item(s) and the field you want to update. You could use a condition (like filtering) to find the right items and then assign a new value to the field."
elif "remove a field" in lower_message or "delete a column" in lower_message:
response = "To remove a field, you would iterate through each item and delete the specified key. Be careful, as this is irreversible."
elif "restructure" in lower_message or "change the format" in lower_message:
response = "Restructuring data involves transforming it into a different shape. This could mean flattening nested objects, grouping items, or pivoting data. This often requires writing custom code to map the old structure to the new one."
elif "what if i" in lower_message or "if i changed" in lower_message:
response = "Tell me what specific change you're contemplating, and I can speculate on the potential impact or how you might approach it programmatically."
# --- General Conversation / Fallback ---
elif "hello" in lower_message or "hi" in lower_message:
response = random.choice(["Hello! How can I help you understand the processed data?", "Hi there! What's on your mind about this data?", "Hey! Ask me anything about the data you've loaded."])
elif "thank you" in lower_message or "thanks" in lower_message:
response = random.choice(["You're welcome!", "Glad I could help.", "No problem! Let me know if you have more questions about the data."])
elif "clear chat" in lower_message: # This should be caught by button, but as text too
# Gradio handles clearing the chatbot component state via the button action.
# We just need to clear the filtered data state here.
response = "Chat history cleared." # Respond that chat is cleared
new_filtered_df_state = None # Also clear filtered data on "clear chat" command by text
elif not response: # Fallback if nothing else matched
response = random.choice([
"I can analyze the data you've processed. What would you like to know? Try asking to filter data, e.g., 'show items where status is active'.",
"Ask me about the number of items, the structure, or values of specific fields. You can also filter data.",
"I can perform basic analysis or filter the data. For example: 'filter by price > 100'.",
"Tell me what you want to extract or filter from the data. Use phrases like 'show items where ...'.",
"I'm equipped to filter your data. Try 'find entries where name contains widget'."
])
# --- End of main try block ---
except Exception, e:
logger.error(f"Chatbot runtime error: {e}")
response = f"An internal error occurred while processing your request: {e}"
response += "\nPlease try rephrasing your question or clear the chat history."
# On unexpected error, preserve the current_filtered_df_state rather than clearing or modifying it.
# new_filtered_df_state = current_filtered_df_state # This line is effectively already done by initialization
# --- Finally block (optional, but good practice if cleanup is needed) ---
# finally:
# # Any cleanup code can go here
# pass
if not response: # Final safety net for response, if it's somehow still empty
response = "I'm not sure how to respond to that. Please try rephrasing or ask for help on available commands."
# Update the last message in chat history with the generated response
# Find the last entry where the assistant's response is None
for i in reversed(range(len(chat_history))):
if chat_history[i][1] is None:
chat_history[i] = (chat_history[i][0], response)
break
# If no None placeholder was found (shouldn't happen with current logic), append as new entry
# else:
# chat_history.append((message, response))
# Ensure chat_history is in the format Gradio expects for type='messages'
# It should be a list of lists: [[user_msg, bot_msg], [user_msg, bot_msg], ...]
# The current format List[Tuple[str, str]] works with type='messages' as tuples are treated like lists.
return chat_history, chatbot_data, new_filtered_df_state
# --- Gradio Interface Definition ---
def create_modern_interface():
"""Create a modern and visually appealing Gradio interface"""
css = """
/* Modern color scheme */
:root {
--primary-color: #1a365d;
--secondary-color: #2d3748;
--accent-color: #4299e1;
--background-color: #f7fafc;
--success-color: #48bb78;
--error-color: #f56565;
--warning-color: #ed8936;
}
/* Container styling */
.container {
max-width: 1200px;
margin: auto;
padding: 2rem;
background-color: var(--background-color);
border-radius: 1rem;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
/* Component styling */
.input-container {
background-color: white;
padding: 1.5rem;
border-radius: 0.5rem;
border: 1px solid #e2e8f0;
margin-bottom: 1rem;
}
/* Button styling */
.primary-button {
background-color: var(--primary-color);
color: white;
padding: 0.75rem 1.5rem;
border-radius: 0.375rem;
border: none;
cursor: pointer;
transition: all 0.2s;
}
.primary-button:hover {
background-color: var(--accent-color);
transform: translateY(-1px);
}
/* Status messages */
.status {
padding: 1rem;
border-radius: 0.375rem;
margin: 1rem 0;
}
.status.success { background-color: #f0fff4; color: var(--success-color); }
.status.error { background-color: #fff5f5; color: var(--error-color); }
.status.warning { background-color: #fffaf0; color: var(--warning-color); }
/* Gallery styling */
.gallery {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));
gap: 1rem;
padding: 1rem;
background-color: white;
border-radius: 0.5rem;
border: 1px solid #e2e8f0;
}
.gallery img {
width: 100%;
height: auto;
border-radius: 0.375rem;
transition: transform 0.2s;
}
.gallery img:hover {
transform: scale(1.05);
}
/* QR Code Viewport Styling */
.viewport-container {
display: grid;
gap: 0.5rem;
padding: 1rem;
background-color: white;
border-radius: 0.5rem;
border: 1px solid #e2e8f0;
margin-top: 1rem;
}
.viewport-item {
display: flex;
flex-direction: column;
align-items: center;
}
.viewport-item img {
width: 100%;
height: auto;
border-radius: 0.375rem;
transition: transform 0.2s;
max-width: 150px;
max-height: 150px;
}
"""
with gr.Blocks(css=css, title="Advanced Data Processor & QR Generator") as interface:
interface.head += """
<script>
let enabledStates = [];
function updateEnabledStates(checkbox) {
const index = parseInt(checkbox.dataset.index);
if (checkbox.checked) {
if (!enabledStates.includes(index)) {
enabledStates.push(index);
}
} else {
enabledStates = enabledStates.filter(item => item !== index);
}
const enabled_qr_codes_component = document.querySelector('[data-component-type="state"][data-state-name="enabled_qr_codes"]');
if (enabled_qr_codes_component) {
enabled_qr_codes_component.value = JSON.stringify(enabledStates);
enabled_qr_codes_component.dispatchEvent(new Event('input'));
}
console.log("Enabled QR Code Indices:", enabledStates);
}
</script>
"""
with gr.Row():
crawl_depth_slider = gr.Slider(
label="Crawl Depth",
minimum=0,
maximum=10,
value=0,
step=1,
interactive=True,
info="Select the maximum depth for crawling links (0-10)."
)
qr_code_paths = gr.State([])
chatbot_data = gr.State(None)
gr.Markdown("""
# π Advanced Data Processing & QR Code Generator
Transform your data into beautifully designed, sequenced QR codes with our cutting-edge processor.
""")
with gr.Tab("π URL Processing"):
url_input = gr.Textbox(
label="Enter URLs (comma or newline separated)",
lines=5,
placeholder="https://example1.com\nhttps://example2.com",
value=""
)
with gr.Tab("π File Input"):
file_input = gr.File(
label="Upload Files",
file_types=None,
file_count="multiple"
)
with gr.Tab("π JSON Input"):
text_input = gr.TextArea(
label="Direct JSON Input",
lines=15,
placeholder="Paste your JSON data here...",
value=""
)
with gr.Row():
example_btn = gr.Button("π Load Example", variant="secondary")
clear_btn = gr.Button("ποΈ Clear", variant="secondary")
with gr.Row():
combine_data = gr.Checkbox(
label="Combine all data into sequence",
value=True,
info="Generate sequential QR codes for combined data"
)
generate_qr_toggle = gr.Checkbox(
label="Generate QR Codes",
value=False, # Default to False as per task
info="Enable to generate QR codes for the processed data."
)
process_btn = gr.Button(
"π Process & Generate QR",
variant="primary"
)
output_json = gr.JSON(label="Processed Data")
output_gallery = gr.Gallery(
label="Generated QR Codes",
columns=3,
height=400,
show_label=True
)
output_text = gr.Textbox(
label="Processing Status",
interactive=False
)
with gr.Tab("πΌοΈ QR Code Viewport") as viewport_tab:
viewport_output = gr.HTML(label="QR Code Sequence Viewport")
enabled_qr_codes = gr.State([])
with gr.Tab("π€ Chat with Data") as chat_tab:
chat_history = gr.State([])
chatbot = gr.Chatbot(label="Data Chatbot", type='messages') # Set type to 'messages'
filtered_chatbot_df_state = gr.State(None) # To store the filtered DataFrame
with gr.Row():
chat_input = gr.Textbox(label="Your Message", placeholder="Ask me about the processed data...")
send_msg_btn = gr.Button("Send")
with gr.Row():
download_full_json_btn = gr.Button("Download Full JSON")
download_filtered_json_btn = gr.Button("Download Filtered JSON")
download_file_output = gr.File(label="Download Data", interactive=False) # For triggering download
clear_chat_btn = gr.Button("Clear Chat History")
# Event handlers must be defined within the Blocks context
def load_example():
example = {
"type": "product_catalog",
"items": [
{
"id": "123",
"name": "Premium Widget",
"description": "High-quality widget with advanced features",
"price": 299.99,
"category": "electronics",
"tags": ["premium", "featured", "new"]
},
{
"id": "456",
"name": "Basic Widget",
"description": "Reliable widget for everyday use",
"price": 149.99,
"category": "electronics",
"tags": ["basic", "popular"]
}
],
"metadata": {
"timestamp": datetime.now().isoformat(),
"version": "2.0",
"source": "example"
}
}
return json.dumps(example, indent=2)
def clear_input():
# Clear all input fields and the chatbot data state
return "", None, "", None
def update_viewport(paths, enabled_states):
if not paths:
return "<p>No QR codes generated yet.</p>"
num_qr_codes = len(paths)
# Determine grid columns based on the number of QRs, aiming for a roughly square layout
cols = math.ceil(math.sqrt(num_qr_codes))
cols = max(1, min(cols, 6)) # Clamp columns between 1 and 6
viewport_html = f'<div class="viewport-container" style="grid-template-columns: repeat({cols}, 1fr);">'
# Ensure enabled_states is a list of indices if it's None or doesn't match current paths
if enabled_states is None or len(enabled_states) != num_qr_codes:
enabled_states = list(range(num_qr_codes))
for i, path in enumerate(paths):
is_enabled = i in enabled_states
border = "border: 2px solid green;" if is_enabled else "border: 2px solid lightgray;"
opacity = "opacity: 1.0;" if is_enabled else "opacity: 0.5;"
# Use /file= prefix for Gradio to serve local files
viewport_html += f'<div class="viewport-item" id="qr_item_{i}">'
viewport_html += f'<img src="/file={path}" style="{border} {opacity}" alt="QR Code {i+1}">'
# Add checkbox with data-index for JS to identify which QR it controls
viewport_html += f'<label><input type="checkbox" data-index="{i}" {"checked" if is_enabled else ""} onchange="updateEnabledStates(this)"> Enable</label>'
viewport_html += '</div>'
viewport_html += '</div>'
return viewport_html
def on_qr_generation(qr_paths_list):
"""Handler to initialize enabled_qr_codes state after QR generation."""
if qr_paths_list is None:
num_qrs = 0
else:
num_qrs = len(qr_paths_list)
# Initially enable all generated QR codes
initial_enabled_states = list(range(num_qrs))
# Return the paths list and the initial enabled states
return qr_paths_list, initial_enabled_states
def process_inputs(urls, files, text, combine, crawl_depth, generate_qr_enabled):
"""Process all inputs and generate QR codes based on toggle"""
results = []
processing_status_messages = []
url_processor = EnhancedURLProcessor()
file_processor = EnhancedFileProcessor()
try:
if text and text.strip():
try:
json_data = json.loads(text)
results.append({
'source': 'json_input',
'extracted_data': json_data,
'timestamp': datetime.now().isoformat(),
'processing_notes': ['Parsed from direct JSON input.']
})
processing_status_messages.append("β
Successfully parsed direct JSON input.")
except json.JSONDecodeError as e:
processing_status_messages.append(f"β Invalid JSON format in text input: {str(e)}")
logger.error(f"Invalid JSON format in text input: {e}")
except Exception as e:
processing_status_messages.append(f"β Error processing direct JSON input: {str(e)}")
logger.error(f"Error processing direct JSON input: {e}")
if urls and urls.strip():
url_list = re.split(r'[,\n]', urls)
url_list = [url.strip() for url in url_list if url.strip()]
for url in url_list:
processing_status_messages.append(f"π Processing URL: {url} with crawl depth {crawl_depth}...")
# Call fetch_content_with_depth which handles recursion
content_result = url_processor.fetch_content_with_depth(url, max_steps=crawl_depth)
# The result from fetch_content_with_depth is already structured
# It includes the main fetch_result and linked_extractions
if content_result: # Check if a result dictionary was returned
results.append(content_result)
# Provide status based on the fetch_result within the recursive structure
main_fetch_status = content_result.get('fetch_result', {}).get('status_code')
if main_fetch_status is not None and 200 <= main_fetch_status < 300:
processing_status_messages.append(f"β
Processed URL: {url} (Level 0, Status: {main_fetch_status})")
if content_result.get('processing_notes'):
processing_status_messages.append(f" Notes for {url}: {'; '.join(content_result['processing_notes'])}")
# Count successfully processed linked pages
def count_successful_fetches(crawl_result):
count = 0
if crawl_result and crawl_result.get('fetch_result') is not None:
status = crawl_result['fetch_result'].get('status_code')
if status is not None and 200 <= status < 300:
count += 1
for linked_result in crawl_result.get('linked_extractions', []):
count += count_successful_fetches(linked_result)
return count
total_attempted_links = len(content_result.get('linked_extractions', []))
total_successful_linked = count_successful_fetches({'linked_extractions': content_result.get('linked_extractions', [])}) # Wrap to match expected structure
if total_attempted_links > 0:
processing_status_messages.append(f" Processed {total_successful_linked}/{total_attempted_links} linked pages up to depth {crawl_depth}.")
else:
processing_status_messages.append(f"β Failed to fetch or process URL: {url} (Status: {main_fetch_status})")
if content_result.get('processing_notes'):
processing_status_messages.append(f" Notes for {url}: {'; '.join(content_result['processing_notes'])}")
else:
processing_status_messages.append(f"β Failed to process URL: {url} (No result returned)")
if files:
for file in files:
processing_status_messages.append(f"π Processing file: {file.name}...")
file_results = file_processor.process_file(file)
if file_results:
results.extend(file_results)
processing_status_messages.append(f"β
Processed file: {file.name}")
for res in file_results:
if res.get('processing_notes'):
processing_status_messages.append(f" Notes for {res.get('filename', 'item')}: {'; '.join(res['processing_notes'])}")
else:
processing_status_messages.append(f"β Failed to process file: {file.name}")
# Add a default note if process_file returned empty list without notes
if not file_results and file and hasattr(file, 'name'):
processing_status_messages.append(f" No results returned for file: {file.name}")
qr_paths = []
final_json_output = None
if results:
final_json_output = results # Assign processed data regardless of QR generation
if generate_qr_enabled:
processing_status_messages.append("βοΈ Generating QR codes as requested...")
# generate_qr_codes expects a List[Dict]
qr_paths = generate_qr_codes(results, combine)
if qr_paths:
processing_status_messages.append(f"β
Successfully generated {len(qr_paths)} QR codes.")
else:
processing_status_messages.append("β Failed to generate QR codes (empty result or error). Check logs.")
else:
processing_status_messages.append("βοΈ QR code generation was disabled. Processed data is available.")
qr_paths = [] # Ensure it's empty
else:
processing_status_messages.append("β οΈ No valid content collected from inputs.")
final_json_output = [] # Ensure output_json is cleared if no results
except Exception as e:
logger.error(f"Overall processing error in process_inputs: {e}")
processing_status_messages.append(f"β An unexpected error occurred during processing: {str(e)}")
final_json_output = [] # Clear output on unexpected error
qr_paths = [] # Clear qrs on unexpected error
# Return the processed data, QR paths, status messages, and update chatbot_data state
return (
final_json_output,
[str(path) for path in qr_paths], # Return paths as strings for Gradio Gallery
"\n".join(processing_status_messages),
final_json_output # Update chatbot_data state
)
# --- Download Logic ---
def download_json_data(data_df: Optional[pd.DataFrame], filename_prefix: str) -> Optional[str]:
"""Helper function to convert DataFrame to JSON file for download."""
if data_df is None or data_df.empty:
logger.info(f"No data provided for download with prefix '{filename_prefix}'.")
return None
try:
# Convert DataFrame to list of dictionaries
data_list = data_df.to_dict(orient='records')
json_str = json.dumps(data_list, indent=2, ensure_ascii=False)
timestamp = int(time.time())
filename = f"{filename_prefix}_{timestamp}.json"
file_path = TEMP_DIR / filename
# Ensure temp directory exists (already done at startup, but good practice)
TEMP_DIR.mkdir(parents=True, exist_ok=True)
with open(file_path, 'w', encoding='utf-8') as f:
f.write(json_str)
logger.info(f"Successfully created JSON file for download: {file_path}")
# Return the path to the temporary file
return str(file_path)
except Exception as e:
logger.error(f"Error creating JSON file for {filename_prefix}: {e}")
return None
def handle_download_full_json(current_chatbot_data_state: Optional[List[Dict]]) -> Optional[str]:
"""Handler for the 'Download Full JSON' button."""
# This function receives the full processed data (List[Dict]) from the chatbot_data state
if not current_chatbot_data_state:
logger.info("No full data available to download.")
return None
try:
# Attempt to create a DataFrame from the full data state for consistent output structure
# This uses the same flattening logic as the chatbot
flat_data = []
def flatten_item_for_download(d, parent_key='', sep='_'):
items = {}
if isinstance(d, dict):
for k, v in d.items():
new_key = parent_key + sep + k if parent_key else k
if isinstance(v, (dict, list)):
nested_items = flatten_item_for_download(v, new_key, sep=sep)
items.update(nested_items)
else:
items[new_key] = v
elif isinstance(d, list):
for i, elem in enumerate(d):
nested_items = flatten_item_for_download(elem, f'{parent_key}{sep}{i}' if parent_key else str(i), sep=sep)
items.update(nested_items)
return items
for item in current_chatbot_data_state:
if isinstance(item, dict):
flat_data.append(flatten_item_for_download(item))
# Handle cases where top-level items might not be dicts, wrap them
elif isinstance(item, (list, str, int, float, bool, type(None))):
flat_data.append({'item_value': item})
if not flat_data:
logger.info("Full data flattened to empty list. Nothing to download.")
return None
df_to_download = pd.DataFrame(flat_data)
if df_to_download.empty:
logger.info("Full data resulted in an empty DataFrame. Nothing to download.")
return None
except Exception as e:
logger.error(f"Error converting full chatbot_data to DataFrame for download: {e}")
return None
# Pass the DataFrame to the generic download function
return download_json_data(df_to_download, "full_data")
def handle_download_filtered_json(current_filtered_df_state: Optional[pd.DataFrame]) -> Optional[str]:
"""Handler for the 'Download Filtered JSON' button."""
# This function receives the already filtered DataFrame from the state
if current_filtered_df_state is None or current_filtered_df_state.empty:
logger.info("No filtered data available to download.")
return None
# Pass the DataFrame directly to the generic download function
return download_json_data(current_filtered_df_state, "filtered_data")
# Connect event handlers within the Blocks context
example_btn.click(load_example, inputs=[], outputs=text_input)
clear_btn.click(clear_input, inputs=[], outputs=[url_input, file_input, text_input, chatbot_data])
process_btn.click(
process_inputs,
inputs=[url_input, file_input, text_input, combine_data, crawl_depth_slider, generate_qr_toggle],
outputs=[output_json, output_gallery, output_text, chatbot_data]
).then(
# This .then() is triggered after process_inputs completes and updates output_gallery
on_qr_generation,
inputs=[output_gallery], # Pass the list of QR paths from the gallery output
outputs=[qr_code_paths, enabled_qr_codes] # Update the state variables
)
# When the viewport tab is selected, update the viewport HTML
viewport_tab.select(update_viewport, inputs=[qr_code_paths, enabled_qr_codes], outputs=[viewport_output])
# Chatbot send button and text input submit events
send_msg_btn.click(
respond_to_chat,
inputs=[chat_input, chat_history, chatbot_data, filtered_chatbot_df_state],
outputs=[chatbot, chatbot_data, filtered_chatbot_df_state]
).then(
# Clear the chat input box after sending message
lambda: "",
inputs=None,
outputs=chat_input
)
chat_input.submit( # Allow submitting by pressing Enter in the text box
respond_to_chat,
inputs=[chat_input, chat_history, chatbot_data, filtered_chatbot_df_state], # Pass filtered_chatbot_df_state here too
outputs=[chatbot, chatbot_data, filtered_chatbot_df_state] # And return it
).then(
# Clear the chat input box after submitting
lambda: "",
inputs=None,
outputs=chat_input
)
# Clear chat history button
clear_chat_btn.click(
# Clear chat history component and the filtered data state
lambda: ([], None),
inputs=None,
outputs=[chatbot, filtered_chatbot_df_state]
)
# Download buttons
download_full_json_btn.click(
fn=handle_download_full_json,
inputs=[chatbot_data], # chatbot_data is the gr.State holding the full dataset (List[Dict])
outputs=[download_file_output] # The File component acts as the download trigger
)
download_filtered_json_btn.click(
fn=handle_download_filtered_json,
inputs=[filtered_chatbot_df_state], # This state holds the filtered DataFrame
outputs=[download_file_output] # The File component acts as the download trigger
)
gr.Markdown("""
### π Features
- **Enhanced URL Scraping**: Extracts HTML text, title, meta description, links, and attempts parsing JSON/XML from URLs based on content type. Supports crawling links up to a specified depth. **(Now performs real fetching)**
- **Advanced File Processing**: Reads various text-based files (.txt, .md, .log etc.), HTML, XML, CSV, and attempts text extraction from common documents (.pdf, .docx, .rtf, .odt - *requires extra dependencies*). **(Now performs real file processing)**
- **Smart JSON Handling**: Parses valid JSON from direct input, files (.json or content), or URLs.
- **Archive Support**: Extracts and processes supported files from .zip, .tar, .gz archives. **(Now performs real extraction)**
- **Robust Encoding Detection**: Uses `chardet` for reliable character encoding identification.
- **Structured Output**: Provides a consistent JSON output format containing raw content (if applicable), extracted data, and processing notes for each processed item.
- **Sequential QR Codes**: Maintains data integrity across multiple codes by chunking the combined/individual processed data.
- **QR Code Viewport**: Visualize generated QR codes in a sequenced square grid with options to enable/disable individual codes for selective scanning/sharing.
- **Modern Design**: Clean, responsive interface with visual feedback.
- **Data Chatbot**: Interact conversationally with the processed JSON data to ask questions about its structure, content, or request specific information.
### π‘ Tips
1. **URLs**: Enter multiple URLs separated by commas or newlines. The processor will attempt to fetch and structure the content based on its type, following links up to the specified **Crawl Depth**.
2. **Files**: Upload any type of file. The processor will attempt to handle supported text-based files, archives (.zip, .tar, .gz), and specific document/structured formats.
3. **JSON**: Use the "Direct JSON Input" tab for pasting JSON data. The system also tries to detect JSON content in file uploads and URLs. Use the "Load Example" button to see a sample JSON structure.
4. **Dependencies**: Processing PDF, DOCX, RTF, and ODT files requires installing optional Python libraries (`PyPDF2`, `python-docx`, `pyth`, `odfpy`). Check the console logs for warnings if a library is missing.
5. **QR Codes**: Choose whether to "Combine all data into sequence" or generate separate sequences for each input item.
6. **Processing**: Monitor the "Processing Status" box for real-time updates and notes about errors or processing steps.
7. **Output**: The "Processed Data" JSON box shows the structured data extracted from your inputs. The "Generated QR Codes" gallery shows the QR code images.
8. **Chatbot**: After processing data, go to the "Chat with Data" tab to ask questions about the JSON output.
### βοΈ QR Code Viewport Instructions
1. Navigate to the **QR Code Viewport** tab after generating QR codes.
2. The generated QR codes will be displayed in a grid based on their total count.
3. Use the checkboxes below each QR code to enable or disable it for visual selection. Enabled codes have a green border and full opacity.
4. This viewport is currently for visualization and selection *within the UI*; it doesn't change the generated files themselves. You would manually select which physical QR codes to scan based on this view.
""")
return interface
def main():
"""Initialize and launch the application"""
try:
mimetypes.init()
interface = create_modern_interface()
interface.launch(
share=False, # Set to True to create a public link (requires auth token)
debug=False, # Set to True for detailed debug output
show_error=True, # Show errors in the UI
show_api=False # Hide API endpoint details
)
except Exception as e:
logger.error(f"Application startup error: {e}")
print(f"\nFatal Error: {e}\nCheck the logs for details.")
raise
if __name__ == "__main__":
# Ensure the script is run directly (not imported)
main() |