Spaces:
Running
Running
File size: 22,157 Bytes
5798d9f 8433748 5798d9f 8433748 c8ff505 8433748 c8ff505 8433748 c8ff505 8433748 5798d9f 8433748 bc33f9a 8433748 bc33f9a 8433748 bc33f9a 8433748 bc33f9a 8433748 bc33f9a 8433748 bc33f9a 8433748 c8ff505 8433748 bc33f9a 8433748 e8a15e5 8433748 bc33f9a 8433748 5798d9f 8433748 5798d9f 8433748 c8ff505 8433748 c8ff505 8433748 5798d9f 8433748 bc33f9a 8433748 c8ff505 8433748 5798d9f 8433748 c8ff505 8433748 c8ff505 8433748 c8ff505 8433748 c8ff505 8433748 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 |
import gradio as gr
#import urllib.request
import requests
import zipfile
import uuid
import bs4
import lxml
import os
#import subprocess
from huggingface_hub import InferenceClient,HfApi
import random
import json
import datetime
from pypdf import PdfReader
import uuid
#from query import tasks
from agent import (
PREFIX,
COMPRESS_DATA_PROMPT,
COMPRESS_DATA_PROMPT_SMALL,
LOG_PROMPT,
LOG_RESPONSE,
)
client = InferenceClient(
"mistralai/Mixtral-8x7B-Instruct-v0.1"
)
reponame="acecalisto3/tmp"
save_data=f'https://huggingface.co/datasets/{reponame}/raw/main/'
token_self = os.environ['HF_TOKEN']
api=HfApi(token=token_self)
def find_all(purpose, task, history, url, result, steps):
return_list = []
visited_links = set()
links_to_visit = [(url, 0)]
while links_to_visit:
current_url, current_depth = links_to_visit.pop(0)
if current_depth < steps:
try:
if current_url not in visited_links:
visited_links.add(current_url)
source = requests.get(current_url)
if source.status_code == 200:
soup = bs4.BeautifulSoup(source.content, 'lxml')
rawp = f'RAW TEXT RETURNED: {soup.text}'
return_list.append(rawp)
for link in soup.find_all("a"):
href = link.get('href')
if href and href.startswith('http'):
links_to_visit.append((href, current_depth + 1))
except Exception as e:
print(f"Error fetching {current_url}: {e}")
return True, return_list
def read_txt(txt_path):
text=""
with open(txt_path,"r") as f:
text = f.read()
f.close()
print (text)
return text
def read_pdf(pdf_path):
text=""
reader = PdfReader(f'{pdf_path}')
number_of_pages = len(reader.pages)
for i in range(number_of_pages):
page = reader.pages[i]
text = f'{text}\n{page.extract_text()}'
print (text)
return text
error_box=[]
def read_pdf_online(url):
uid=uuid.uuid4()
print(f"reading {url}")
response = requests.get(url, stream=True)
print(response.status_code)
text=""
#################
#####################
try:
if response.status_code == 200:
with open("test.pdf", "wb") as f:
f.write(response.content)
#f.close()
#out = Path("./data.pdf")
#print (out)
reader = PdfReader("test.pdf")
number_of_pages = len(reader.pages)
print(number_of_pages)
for i in range(number_of_pages):
page = reader.pages[i]
text = f'{text}\n{page.extract_text()}'
print(f"PDF_TEXT:: {text}")
return text
else:
text = response.status_code
error_box.append(url)
print(text)
return text
except Exception as e:
print (e)
return e
VERBOSE = True
MAX_HISTORY = 100
MAX_DATA = 20000
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def run_gpt(
prompt_template,
stop_tokens,
max_tokens,
seed,
**prompt_kwargs,
):
print(seed)
timestamp=datetime.datetime.now()
generate_kwargs = dict(
temperature=0.9,
max_new_tokens=max_tokens,
top_p=0.95,
repetition_penalty=1.0,
do_sample=True,
seed=seed,
)
content = PREFIX.format(
timestamp=timestamp,
purpose="Compile the provided data and complete the users task"
) + prompt_template.format(**prompt_kwargs)
if VERBOSE:
print(LOG_PROMPT.format(content))
#formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
#formatted_prompt = format_prompt(f'{content}', history)
stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False)
resp = ""
for response in stream:
resp += response.token.text
#yield resp
if VERBOSE:
print(LOG_RESPONSE.format(resp))
return resp
def compress_data(c, instruct, history):
seed=random.randint(1,1000000000)
print (c)
#tot=len(purpose)
#print(tot)
divr=int(c)/MAX_DATA
divi=int(divr)+1 if divr != int(divr) else int(divr)
chunk = int(int(c)/divr)
print(f'chunk:: {chunk}')
print(f'divr:: {divr}')
print (f'divi:: {divi}')
out = []
#out=""
s=0
e=chunk
print(f'e:: {e}')
new_history=""
#task = f'Compile this data to fulfill the task: {task}, and complete the purpose: {purpose}\n'
for z in range(divi):
print(f's:e :: {s}:{e}')
hist = history[s:e]
resp = run_gpt(
COMPRESS_DATA_PROMPT_SMALL,
stop_tokens=["observation:", "task:", "action:", "thought:"],
max_tokens=8192,
seed=seed,
direction=instruct,
knowledge="",
history=hist,
)
out.append(resp)
#new_history = resp
print (resp)
#out+=resp
e=e+chunk
s=s+chunk
return out
def compress_data_og(c, instruct, history):
seed=random.randint(1,1000000000)
print (c)
#tot=len(purpose)
#print(tot)
divr=int(c)/MAX_DATA
divi=int(divr)+1 if divr != int(divr) else int(divr)
chunk = int(int(c)/divr)
print(f'chunk:: {chunk}')
print(f'divr:: {divr}')
print (f'divi:: {divi}')
out = []
#out=""
s=0
e=chunk
print(f'e:: {e}')
new_history=""
#task = f'Compile this data to fulfill the task: {task}, and complete the purpose: {purpose}\n'
for z in range(divi):
print(f's:e :: {s}:{e}')
hist = history[s:e]
resp = run_gpt(
COMPRESS_DATA_PROMPT,
stop_tokens=["observation:", "task:", "action:", "thought:"],
max_tokens=8192,
seed=seed,
direction=instruct,
knowledge=new_history,
history=hist,
)
new_history = resp
print (resp)
out+=resp
e=e+chunk
s=s+chunk
'''
resp = run_gpt(
COMPRESS_DATA_PROMPT,
stop_tokens=["observation:", "task:", "action:", "thought:"],
max_tokens=8192,
seed=seed,
direction=instruct,
knowledge=new_history,
history="All data has been recieved.",
)'''
print ("final" + resp)
#history = "observation: {}\n".format(resp)
return resp
def summarize(
inp: str,
history: list,
report_check: bool,
sum_mem_check: str,
data: str = None,
files: list = None,
url: str = None,
pdf_url: str = None,
pdf_batch: str = None
) -> str:
"""
Summarizes the provided input data, processes files, URLs, and PDFs, and yields the results.
Parameters:
- inp (str): The input data to be processed. If empty, defaults to "Process this data".
- history (list): A list to keep track of the conversation history.
- report_check (bool): A flag indicating whether to return a report.
- sum_mem_check (str): A string indicating whether to summarize or save memory.
- data (str, optional): Additional data to process. Defaults to None.
- files (list, optional): A list of file paths to process. Defaults to None.
- url (str, optional): A URL to fetch data from. Defaults to None.
- pdf_url (str, optional): A URL pointing to a PDF file to read. Defaults to None.
- pdf_batch (str, optional): A batch of PDF URLs (comma-separated) to read. Defaults to None.
Yields:
- A tuple containing:
- An empty string (for future use).
- The updated history list.
- An error box (if any errors occurred).
- A JSON box for structured output.
The function processes the input data, reads from specified URLs, PDFs, and files, and summarizes or saves the data based on the provided parameters.
"""
json_box = []
rawp = ""
json_out = None
if inp == "":
inp = "Process this data"
history.clear()
history = [(inp, "Working on it...")]
yield "", history, error_box, json_box
# Process PDF batch URLs
if pdf_batch and pdf_batch.startswith("http"):
c = pdf_batch.count(",") + 1 # Count the number of URLs
data = ""
try:
for i in range(c):
batch_url = pdf_batch.split(",", c)[i]
bb = read_pdf_online(batch_url)
data = f'{data}\nFile Name URL ({batch_url}):\n{bb}'
except Exception as e:
print(e)
# Process single PDF URL
if pdf_url and pdf_url.startswith("http"):
print("PDF_URL")
out = read_pdf_online(pdf_url)
data = out
# Process regular URL
if url and url.startswith("http"):
val, out = find_all(inp, "", history, url, "") # Add missing arguments
if not val:
data = "Error"
rawp = str(out) # Assign rawp here
else:
data = out
# Process uploaded files
if files:
for i, file in enumerate(files):
try:
print(file)
if file.endswith(".pdf"):
zz = read_pdf(file)
print(zz)
data = f'{data}\nFile Name ({file}):\n{zz}'
elif file.endswith(".txt"):
zz = read_txt(file)
print(zz)
data = f'{data}\nFile Name ({file}):\n{zz}'
except Exception as e:
data = f'{data}\nError opening File Name ({file})'
print(e)
# Process the collected data
if data != "Error" and data != "":
print(inp)
out = str(data)
rl = len(out)
print(f'rl:: {rl}')
c = sum(1 for i in str(out) if i in [" ", ",", "\n"]) # Count delimiters
print(f'c:: {c}')
if sum_mem_check == "Memory":
json_out = save_memory(inp, out)
rawp = "Complete" # Assign rawp here
if sum_mem_check == "Summarize":
json_out = compress_data(c, inp, out)
out = str(json_out)
if report_check:
rl = len(out)
print(f'rl:: {rl}')
c = sum(1 for i in str(out) if i in [" ", ",", "\n"]) # Count delimiters
print(f'c2:: {c}')
rawp = compress_data_og(c, inp, out) # Assign rawp here
else:
rawp = out # Assign rawp here
else:
rawp = "Provide a valid data source" # Assign rawp here
history.clear()
history.append((inp, rawp))
yield "", history, error_box, json_out
SAVE_MEMORY = """
You are attempting to complete the task
task: {task}
Data:
{history}
Instructions:
Compile and categorize the data above into a JSON dictionary string
Include ALL text, datapoints, titles, descriptions, and source urls indexed into an easy to search JSON format
Your final response should be only the final formatted JSON string enclosed in brackets, and nothing else.
Required keys:
"keywords":["short", "list", "of", "important", "keywords", "found", "in", "this", "entry"]
"title":"title of entry"
"description":"A sentence summarizing the topic of this entry"
"content":"A brief paragraph summarizing the important datapoints found in this entry"
"url":"https://url.source"
"""
def save_memory(purpose, history):
uid=uuid.uuid4()
history=str(history)
c=1
inp = str(history)
rl = len(inp)
print(f'rl:: {rl}')
for i in str(inp):
if i == " " or i=="," or i=="\n" or i=="/" or i=="\\" or i=="." or i=="<":
c +=1
print (f'c:: {c}')
seed=random.randint(1,1000000000)
print (c)
#tot=len(purpose)
#print(tot)
divr=int(c)/MAX_DATA
divi=int(divr)+1 if divr != int(divr) else int(divr)
chunk = int(int(c)/divr)
print(f'chunk:: {chunk}')
print(f'divr:: {divr}')
print (f'divi:: {divi}')
out_box = []
#out=""
s=0
ee=chunk
print(f'e:: {ee}')
new_history=""
task = f'Index this Data\n'
for z in range(divi):
print(f's:e :: {s}:{ee}')
hist = inp[s:ee]
resp = run_gpt(
SAVE_MEMORY,
stop_tokens=["observation:", "task:", "action:", "thought:"],
max_tokens=4096,
seed=seed,
purpose=purpose,
task=task,
history=hist,
).strip('\n')
#new_history = resp
#print (resp)
#out+=resp
#print ("final1" + resp)
try:
resp='[{'+resp.split('[{')[1].split('</s>')[0]
#print ("final2\n" + resp)
#print(f"keywords:: {resp['keywords']}")
except Exception as e:
resp = resp
print(e)
timestamp=str(datetime.datetime.now())
timename=timestamp.replace(" ","--").replace(":","-").replace(".","-")
json_object=resp
#json_object = json.dumps(out_box)
#json_object = json.dumps(out_box,indent=4)
with open(f"tmp-{uid}.json", "w") as outfile:
outfile.write(json_object)
outfile.close()
api.upload_file(
path_or_fileobj=f"tmp-{uid}.json",
path_in_repo=f"/mem-test2/{timename}---{s}-{ee}.json",
repo_id=reponame,
#repo_id=save_data.split('datasets/',1)[1].split('/raw',1)[0],
token=token_self,
repo_type="dataset",
)
lines = resp.strip().strip("\n").split("\n")
r = requests.get(f'{save_data}mem-test2/main.json')
print(f'status code main:: {r.status_code}')
if r.status_code==200:
lod = json.loads(r.text)
#lod = eval(lod)
print (f'lod:: {lod}')
if not r.status_code==200:
lod = []
for i,line in enumerate(lines):
key_box=[]
print(f'LINE:: {line}')
if ":" in line:
print(f'line:: {line}')
if "keywords" in line:
print(f'trying:: {line}')
keyw=line.split(":")[1]
print (keyw)
print (keyw.split("[")[1].split("]")[0])
keyw=keyw.split("[")[1].split("]")[0]
for ea in keyw.split(","):
s1=""
ea=ea.strip().strip("\n")
for ev in ea:
if ev.isalnum():
s1+=ev
if ev == " ":
s1+=ev
#ea=s1
print(s1)
key_box.append(s1)
lod.append({"file_name":f"{timename}---{s}-{ee}","keywords":key_box,"index":f"{s}:{ee}"})
json_object = json.dumps(lod, indent=4)
with open(f"tmp2-{uid}.json", "w") as outfile2:
outfile2.write(json_object)
outfile2.close()
api.upload_file(
path_or_fileobj=f"tmp2-{uid}.json",
path_in_repo=f"/mem-test2/main.json",
repo_id=reponame,
#repo_id=save_data.split('datasets/',1)[1].split('/raw',1)[0],
token=token_self,
repo_type="dataset",
)
ee=ee+chunk
s=s+chunk
out_box.append(resp)
return out_box
def create_zip_file(output_data, zip_name):
with zipfile.ZipFile(zip_name, 'w') as zipf:
for i, data in enumerate(output_data):
zipf.writestr(f'data_{i}.txt', data)
return zip_name
def clear_fn():
return "", [(None, None)]
with gr.Blocks() as app:
gr.HTML("""<center><h1>Mixtral 8x7B TLDR Summarizer + Web</h1><h3>Summarize Data of unlimited length</h3></center>""")
# Main chat interface
chatbot = gr.Chatbot(
label="Mixtral 8x7B Chatbot",
show_copy_button=True,
type='messages',
height=400,
purpose_input = gr.Textbox(label="Purpose"),
task_input = gr.Textbox(label="Task"),
history_input = gr.Textbox(label="History"),
url_input = gr.Textbox(label="URL"),
result_input = gr.Textbox(label="Result"),
steps_input = gr.Number(label="Steps", value=3), # Default value of 3 steps
output_component = gr.Textbox(label="Output"),
button = gr.Button("Search"),
)
# Control Panel
with gr.Row():
with gr.Column(scale=3):
prompt = gr.Textbox(
label="Instructions (optional)",
placeholder="Enter processing instructions here..."
)
steps = gr.Slider(
label="Crawl Steps",
minimum=1,
maximum=5,
value=1,
info="Number of levels to crawl for web content"
)
with gr.Column(scale=1):
report_check = gr.Checkbox(
label="Return Report",
value=True,
info="Generate detailed analysis report"
)
sum_mem_check = gr.Radio(
label="Output Type",
choices=["Summary", "Memory"],
value="Summary",
info="Choose between summarized or memory-based output"
)
button = gr.Button("Process", variant="primary")
# Clear button
with gr.Row():
clear_btn = gr.Button("Clear", variant="secondary")
# Input Tabs
with gr.Tabs() as input_tabs:
with gr.Tab("π Text"):
data = gr.Textbox(
label="Input Data",
lines=6,
placeholder="Paste your text here..."
)
with gr.Tab("π File"):
files = gr.File(
label="Upload Files",
file_types=[".pdf", ".txt"],
file_count="multiple"
)
with gr.Tab("π Web URL"):
url = gr.Textbox(
label="Website URL",
placeholder="https://example.com"
)
with gr.Tab("π PDF URL"):
pdf_url = gr.Textbox(
label="PDF URL",
placeholder="https://example.com/document.pdf"
)
with gr.Tab("π PDF Batch"):
pdf_batch = gr.Textbox(
label="PDF URLs (comma separated)",
placeholder="url1.pdf, url2.pdf, url3.pdf"
)
# Output Section
with gr.Row():
with gr.Column():
json_out = gr.JSON(
label="Structured Output",
show_label=True
)
with gr.Column():
e_box = gr.Textbox(
label="Status & Errors",
interactive=False
)
def process_and_format_response(instructions, chat_history, report, summary_memory,
input_data, uploaded_files, input_url, pdf_input_url): # Removed extra parameters
try:
# Process the inputs with reduced parameters
result = None
for _ in summarize(
instructions,
chat_history if chat_history else [],
report,
summary_memory,
input_data,
uploaded_files,
input_url,
pdf_input_url # Removed extra parameters
):
result = _
if result:
_, history, errors, json_data = result
# Convert history to ChatMessage format
formatted_messages = []
if isinstance(history, list):
for msg in history:
if isinstance(msg, tuple) and len(msg) == 2:
formatted_messages.extend([
gr.ChatMessage(content=str(msg[0]), role="user"),
gr.ChatMessage(content=str(msg[1]), role="assistant")
])
else:
formatted_messages.extend([
gr.ChatMessage(content=str(instructions), role="user"),
gr.ChatMessage(content=str(history), role="assistant")
])
# Format error messages
error_message = "\n".join(errors) if errors else "Processing completed successfully"
return (
"", # Clear the prompt
formatted_messages,
error_message,
json_data
)
except Exception as e:
error_msg = f"Error: {str(e)}"
return (
"",
[
gr.ChatMessage(content=str(instructions), role="user"),
gr.ChatMessage(content=error_msg, role="assistant")
],
error_msg,
None
)
def clear_fn():
return "", []
# Update the button click event to match parameters
button.click(
find_all,
inputs=[
purpose_input, # Add these input components to your Gradio interface
task_input,
history_input,
url_input,
result_input,
steps_input
],
outputs=[output_component]
)
# Launch the app
app.queue(default_concurrency_limit=20).launch(
show_api=False,
share=True,
server_name="0.0.0.0",
server_port=7860
) |