File size: 23,753 Bytes
c3b1d58
 
7d538d5
 
 
 
 
7f65bf9
c3b1d58
7d538d5
 
 
 
 
d139998
7d538d5
 
 
 
d139998
 
 
 
 
f948546
d139998
554b5c7
7d538d5
c3b1d58
 
7d538d5
 
 
 
 
e08a69a
c3b1d58
 
7d538d5
7f65bf9
7d538d5
 
 
 
 
 
 
 
 
 
d139998
 
 
 
 
 
 
7d538d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f65bf9
7d538d5
 
7f65bf9
7d538d5
 
 
 
 
 
 
d139998
7d538d5
d139998
7d538d5
 
 
 
d139998
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6ed86a
7d538d5
 
 
 
 
e6ed86a
7d538d5
 
 
 
 
 
 
 
7f65bf9
7d538d5
 
 
e6ed86a
 
7f65bf9
7d538d5
 
 
 
 
c3b1d58
7d538d5
 
 
 
 
e6ed86a
 
7d538d5
 
 
 
 
d139998
7d538d5
 
 
e08a69a
7d538d5
e08a69a
7d538d5
 
 
 
 
 
 
d139998
 
 
 
 
 
 
e784699
7d538d5
 
 
e08a69a
7d538d5
 
d139998
7d538d5
 
 
554b5c7
7d538d5
 
d139998
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d538d5
 
 
e6ed86a
7d538d5
 
 
e6ed86a
7d538d5
 
7f65bf9
7d538d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6ed86a
7d538d5
 
7f65bf9
7d538d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6ed86a
7d538d5
 
554b5c7
7d538d5
 
 
 
 
 
554b5c7
7d538d5
 
 
 
 
 
 
 
 
 
 
 
554b5c7
7d538d5
 
 
 
 
 
 
 
e6ed86a
7d538d5
 
 
 
 
 
 
e6ed86a
7d538d5
 
e6ed86a
7d538d5
 
 
554b5c7
7d538d5
 
 
 
 
 
 
 
 
 
 
7f65bf9
7d538d5
 
 
 
 
 
 
 
 
 
 
554b5c7
7d538d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
554b5c7
7d538d5
 
7f65bf9
7d538d5
 
 
 
 
 
 
 
 
e6ed86a
7d538d5
 
 
 
 
e6ed86a
7d538d5
 
 
 
e6ed86a
 
7d538d5
 
 
 
e6ed86a
554b5c7
7d538d5
 
 
 
 
 
 
 
 
 
 
17fdb3b
 
7d538d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17fdb3b
 
f948546
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
import json
import os
import re
import time
import logging
import mimetypes
import tempfile
from datetime import datetime
from pathlib import Path
from urllib.parse import urlparse
from typing import List, Dict, Tuple, Union, Optional
import requests
import validators
import gradio as gr
from diskcache import Cache
from bs4 import BeautifulSoup
from fake_useragent import UserAgent
from cleantext import clean
import qrcode
import PyPDF2
from PIL import Image
import pytesseract
import cv2
import numpy as np
import fitz  # PyMuPDF
import zipfile

# Setup logging with detailed configuration
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - [%(filename)s:%(lineno)d] - %(message)s',
    handlers=[
        logging.StreamHandler(),
        logging.FileHandler('app.log', encoding='utf-8')
    ]
)
logger = logging.getLogger(__name__)

class URLProcessor:
    def __init__(self):
        self.session = requests.Session()
        self.timeout = 10  # seconds
        self.session.headers.update({
            'User-Agent': UserAgent().random,
            'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8',
            'Accept-Language': 'en-US,en;q=0.5',
            'Accept-Encoding': 'gzip, deflate, br',
            'Connection': 'keep-alive',
            'Upgrade-Insecure-Requests': '1'
        })
        self.supported_content_types = {
            'text/html': self._fetch_html_content,
            'application/pdf': self._fetch_pdf_content,
            'image': self._fetch_image_content,
            'application/json': self._fetch_json_content,
            'text/plain': self._fetch_text_content
        }

    def advanced_text_cleaning(self, text: str) -> str:
        """Robust text cleaning with version compatibility"""
        try:
            cleaned_text = clean(
                text,
                fix_unicode=True,
                to_ascii=True,
                lower=True,
                no_line_breaks=True,
                no_urls=True,
                no_emails=True,
                no_phone_numbers=True,
                no_numbers=False,
                no_digits=False,
                no_currency_symbols=True,
                no_punct=False
            ).strip()
            return cleaned_text
        except Exception as e:
            logger.warning(f"Text cleaning error: {e}. Using fallback method.")
            text = re.sub(r'[\x00-\x1F\x7F-\x9F]', '', text)  # Remove control characters
            text = text.encode('ascii', 'ignore').decode('ascii')  # Remove non-ASCII characters
            text = re.sub(r'\s+', ' ', text)  # Normalize whitespace
            return text.strip()

    def validate_url(self, url: str) -> Dict:
        """Validate URL format and accessibility"""
        try:
            if not validators.url(url):
                return {'is_valid': False, 'message': 'Invalid URL format'}
            
            response = self.session.head(url, timeout=self.timeout)
            response.raise_for_status()
            return {'is_valid': True, 'message': 'URL is valid and accessible'}
        except Exception as e:
            return {'is_valid': False, 'message': f'URL validation failed: {str(e)}'}

    def fetch_content(self, url: str) -> Optional[Dict]:
        """Universal content fetcher with enhanced content type handling"""
        try:
            # Special case handling
            if 'drive.google.com' in url:
                return self._handle_google_drive(url)
            if 'calendar.google.com' in url and 'ical' in url:
                return self._handle_google_calendar(url)

            # Get content type
            response = self.session.head(url, timeout=self.timeout)
            content_type = response.headers.get('Content-Type', '').split(';')[0].lower()

            # Find appropriate handler
            handler = None
            for supported_type, type_handler in self.supported_content_types.items():
                if content_type.startswith(supported_type):
                    handler = type_handler
                    break

            if handler:
                return handler(url)
            else:
                logger.warning(f"Unsupported content type: {content_type}")
                return self._fetch_text_content(url)

        except Exception as e:
            logger.error(f"Content fetch failed: {e}")
            return None

    def _handle_google_drive(self, url: str) -> Optional[Dict]:
        """Process Google Drive file links"""
        try:
            file_id = re.search(r'/file/d/([a-zA-Z0-9_-]+)', url)
            if not file_id:
                logger.error(f"Invalid Google Drive URL: {url}")
                return None
                
            direct_url = f"https://drive.google.com/uc?export=download&id={file_id.group(1)}"
            response = self.session.get(direct_url, timeout=self.timeout)
            response.raise_for_status()
            
            return {
                'content': response.text,
                'content_type': response.headers.get('Content-Type', ''),
                'timestamp': datetime.now().isoformat()
            }
        except Exception as e:
            logger.error(f"Google Drive processing failed: {e}")
            return None

    def _handle_google_calendar(self, url: str) -> Optional[Dict]:
        """Process Google Calendar ICS feeds"""
        try:
            response = self.session.get(url, timeout=self.timeout)
            response.raise_for_status()
            return {
                'content': response.text,
                'content_type': 'text/calendar',
                'timestamp': datetime.now().isoformat()
            }
        except Exception as e:
            logger.error(f"Calendar fetch failed: {e}")
            return None

    def _fetch_html_content(self, url: str) -> Optional[Dict]:
        """Enhanced HTML content processing with metadata extraction"""
        try:
            response = self.session.get(url, timeout=self.timeout)
            response.raise_for_status()
            
            soup = BeautifulSoup(response.text, 'html.parser')
            
            # Remove unwanted elements
            for element in soup(['script', 'style', 'nav', 'footer', 'header', 'meta', 'link']):
                element.decompose()
                
            # Extract main content
            main_content = soup.find('main') or soup.find('article') or soup.body
            
            # Extract metadata
            metadata = {
                'title': soup.title.string if soup.title else None,
                'description': soup.find('meta', {'name': 'description'})['content'] if soup.find('meta', {'name': 'description'}) else None,
                'keywords': soup.find('meta', {'name': 'keywords'})['content'] if soup.find('meta', {'name': 'keywords'}) else None,
                'author': soup.find('meta', {'name': 'author'})['content'] if soup.find('meta', {'name': 'author'}) else None
            }
            
            # Clean and structure content
            text_content = main_content.get_text(separator='\n', strip=True)
            cleaned_content = self.advanced_text_cleaning(text_content)
            
            return {
                'content': cleaned_content,
                'metadata': metadata,
                'content_type': response.headers.get('Content-Type', ''),
                'timestamp': datetime.now().isoformat()
            }
        except Exception as e:
            logger.error(f"HTML processing failed: {e}")
            return None

    def _fetch_pdf_content(self, url: str) -> Optional[Dict]:
        """Process PDF content with enhanced metadata extraction"""
        try:
            response = self.session.get(url, timeout=self.timeout)
            response.raise_for_status()
            
            with tempfile.NamedTemporaryFile(suffix='.pdf') as temp_file:
                temp_file.write(response.content)
                temp_file.flush()
                
                # Extract text and metadata using PyMuPDF
                doc = fitz.open(temp_file.name)
                
                # Extract text with formatting preservation
                text = ""
                metadata = {
                    'title': doc.metadata.get('title'),
                    'author': doc.metadata.get('author'),
                    'subject': doc.metadata.get('subject'),
                    'keywords': doc.metadata.get('keywords'),
                    'creator': doc.metadata.get('creator'),
                    'producer': doc.metadata.get('producer'),
                    'page_count': len(doc),
                    'file_size': os.path.getsize(temp_file.name),
                    'version': doc.version
                }
                
                # Extract text with layout preservation
                for page in doc:
                    blocks = page.get_text("blocks")
                    for block in blocks:
                        if block[6] == 0:  # Text block
                            text += block[4] + "\n"
                
                doc.close()
                cleaned_content = self.advanced_text_cleaning(text)
                
                return {
                    'content': cleaned_content,
                    'metadata': metadata,
                    'content_type': 'application/pdf',
                    'timestamp': datetime.now().isoformat()
                }
        except Exception as e:
            logger.error(f"PDF processing failed: {e}")
            return None

    def _fetch_image_content(self, url: str) -> Optional[Dict]:
        """Process image content with OCR and advanced image processing"""
        try:
            response = self.session.get(url, timeout=self.timeout)
            response.raise_for_status()
            
            with tempfile.NamedTemporaryFile(suffix='.jpg') as temp_file:
                temp_file.write(response.content)
                temp_file.flush()
                
                # Load image with OpenCV
                img = cv2.imread(temp_file.name)
                if img is None:
                    raise ValueError("Failed to load image")
                
                # Image preprocessing for better OCR
                gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
                denoised = cv2.fastNlMeansDenoising(gray)
                thresh = cv2.threshold(denoised, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]
                
                # Extract text using Tesseract
                text = pytesseract.image_to_string(thresh)
                cleaned_text = self.advanced_text_cleaning(text) if text else None
                
                # Extract metadata and additional image features
                with Image.open(temp_file.name) as pil_img:
                    exif = pil_img._getexif() if hasattr(pil_img, '_getexif') else None
                    metadata = {
                        'format': pil_img.format,
                        'mode': pil_img.mode,
                        'size': pil_img.size,
                        'exif': exif,
                        'image_features': {
                            'resolution': img.shape,
                            'channels': img.shape[2] if len(img.shape) > 2 else 1,
                            'mean_brightness': np.mean(gray),
                            'has_text': bool(cleaned_text and cleaned_text.strip())
                        }
                    }
                
                return {
                    'content': cleaned_text,
                    'metadata': metadata,
                    'content_type': response.headers.get('Content-Type', ''),
                    'timestamp': datetime.now().isoformat()
                }
        except Exception as e:
            logger.error(f"Image processing failed: {e}")
            return None

    def _fetch_json_content(self, url: str) -> Optional[Dict]:
        """Process JSON content"""
        try:
            response = self.session.get(url, timeout=self.timeout)
            response.raise_for_status()
            
            content = response.json()
            
            return {
                'content': json.dumps(content, indent=2),
                'content_type': 'application/json',
                'timestamp': datetime.now().isoformat()
            }
        except Exception as e:
            logger.error(f"JSON processing failed: {e}")
            return None

    def _fetch_text_content(self, url: str) -> Optional[Dict]:
        """Process plain text content"""
        try:
            response = self.session.get(url, timeout=self.timeout)
            response.raise_for_status()
            
            cleaned_content = self.advanced_text_cleaning(response.text)
            
            return {
                'content': cleaned_content,
                'content_type': response.headers.get('Content-Type', ''),
                'timestamp': datetime.now().isoformat()
            }
        except Exception as e:
            logger.error(f"Text processing failed: {e}")
            return None
            
class FileProcessor:
    """Class to handle file processing"""
    
    def __init__(self, max_file_size: int = 2 * 1024 * 1024 * 1024):  # 2GB default
        self.max_file_size = max_file_size
        self.supported_text_extensions = {'.txt', '.md', '.csv', '.json', '.xml'}
        
    def is_text_file(self, filepath: str) -> bool:
        """Check if file is a text file"""
        try:
            mime_type, _ = mimetypes.guess_type(filepath)
            return (mime_type and mime_type.startswith('text/')) or \
                   (os.path.splitext(filepath)[1].lower() in self.supported_text_extensions)
        except Exception:
            return False

    def process_file(self, file) -> List[Dict]:
        """Process uploaded file with enhanced error handling"""
        if not file:
            return []

        dataset = []
        try:
            file_size = os.path.getsize(file.name)
            if file_size > self.max_file_size:
                logger.warning(f"File size ({file_size} bytes) exceeds maximum allowed size")
                return []

            with tempfile.TemporaryDirectory() as temp_dir:
                if zipfile.is_zipfile(file.name):
                    dataset.extend(self._process_zip_file(file.name, temp_dir))
                else:
                    dataset.extend(self._process_single_file(file))

        except Exception as e:
            logger.error(f"Error processing file: {str(e)}")
            return []

        return dataset

    def _process_zip_file(self, zip_path: str, temp_dir: str) -> List[Dict]:
        """Process ZIP file contents"""
        results = []
        with zipfile.ZipFile(zip_path, 'r') as zip_ref:
            zip_ref.extractall(temp_dir)
            for root, _, files in os.walk(temp_dir):
                for filename in files:
                    filepath = os.path.join(root, filename)
                    if self.is_text_file(filepath):
                        try:
                            with open(filepath, 'r', encoding='utf-8', errors='ignore') as f:
                                content = f.read()
                            if content.strip():
                                results.append({
                                    "source": "file",
                                    "filename": filename,
                                    "content": content,
                                    "timestamp": datetime.now().isoformat()
                                })
                        except Exception as e:
                            logger.error(f"Error reading file {filename}: {str(e)}")
        return results

def _process_single_file(self, file) -> List[Dict]:
    try:
        file_stat = os.stat(file.name)
        
        # For very large files, read in chunks and summarize
        if file_stat.st_size > 100 * 1024 * 1024:  # 100MB
            logger.info(f"Processing large file: {file.name} ({file_stat.st_size} bytes)")
            
            # Read first and last 1MB for extremely large files
            content = ""
            with open(file.name, 'r', encoding='utf-8', errors='ignore') as f:
                content = f.read(1 * 1024 * 1024)  # First 1MB
                content += "\n...[Content truncated due to large file size]...\n"
                
                # Seek to the last 1MB
                f.seek(max(0, file_stat.st_size - 1 * 1024 * 1024))
                content += f.read()  # Last 1MB
        else:
            # Regular file processing
            with open(file.name, 'r', encoding='utf-8', errors='ignore') as f:
                content = f.read()
        
        return [{
            'source': 'file',
            'filename': os.path.basename(file.name),
            'file_size': file_stat.st_size,
            'mime_type': mimetypes.guess_type(file.name)[0],
            'created': datetime.fromtimestamp(file_stat.st_ctime).isoformat(),
            'modified': datetime.fromtimestamp(file_stat.st_mtime).isoformat(),
            'content': content,
            'timestamp': datetime.now().isoformat()
        }]
    except Exception as e:
        logger.error(f"File processing error: {e}")
        return []

def generate_qr_code(json_data):
    """Generate a QR code from JSON data."""
    qr = qrcode.make(json_data)
    qr_path = "output/qr_code.png"
    qr.save(qr_path)
    return qr_path

def create_interface():
    """Create a comprehensive Gradio interface with advanced features"""
    
    css = """
    .container { max-width: 1200px; margin: auto; }
    .warning { background-color: #fff3cd; color: #856404; }
    .error { background-color: #f8d7da; color: #721c24; }
    """
    
    with gr.Blocks(css=css, title="Advanced Text & URL Processor") as interface:
        gr.Markdown("# 🌐 Advanced URL & Text Processing Toolkit")
        
        with gr.Tab("URL Processing"):
            url_input = gr.Textbox(
                label="Enter URLs (comma or newline separated)", 
                lines=5,
                placeholder="https://example1.com\nhttps://example2.com"
            )
        
        with gr.Tab("File Input"):
            file_input = gr.File(
                label="Upload text file or ZIP archive",
                file_types=[".txt", ".zip", ".md", ".csv", ".json", ".xml"]
            )

        with gr.Tab("Text Input"):
            text_input = gr.Textbox(
                label="Raw Text Input", 
                lines=5,
                placeholder="Paste your text here..."
            )
        
        with gr.Tab("JSON Editor"):
            json_editor = gr.Textbox(
                label="JSON Editor",
                lines=20,
                placeholder="View and edit your JSON data here...",
                interactive=True,
                elem_id="json-editor"  # Optional: for custom styling
            )
        
        with gr.Tab("Scratchpad"):
            scratchpad = gr.Textbox(
                label="Scratchpad",
                lines=10,
                placeholder="Quick notes or text collections...",
                interactive=True
            )
        
        process_btn = gr.Button("Process Input", variant="primary")
        qr_btn = gr.Button("Generate QR Code", variant="secondary")
        
        output_text = gr.Textbox(label="Processing Results", interactive=False)
        output_file = gr.File(label="Processed Output")
        qr_output = gr.Image(label="QR Code", type="filepath")  # To display the generated QR code
        
        def process_all_inputs(urls, file, text, notes):
            """Process all input types with progress tracking"""
            try:
                processor = URLProcessor()
                file_processor = FileProcessor()
                results = []
                
                # Process URLs
                if urls:
                    url_list = re.split(r'[,\n]', urls)
                    url_list = [url.strip() for url in url_list if url.strip()]
                    
                    for url in url_list:
                        validation = processor.validate_url(url)
                        if validation.get('is_valid'):
                            content = processor.fetch_content(url)
                            if content:
                                results.append({
                                    'source': 'url',
                                    'url': url,
                                    'content': content,
                                    'timestamp': datetime.now().isoformat()
                                })
                
                # Process files
                if file:
                    results.extend(file_processor.process_file(file))
        
                # Process text input
                if text:
                    cleaned_text = processor.advanced_text_cleaning(text)
                    results.append({
                        'source': 'direct_input',
                        'content': cleaned_text,
                        'timestamp': datetime.now().isoformat()
                    })
                
                # Generate output
                if results:
                    output_dir = Path('output') / datetime.now().strftime('%Y-%m-%d')
                    output_dir.mkdir(parents=True, exist_ok=True)
                    output_path = output_dir / f'processed_{int(time.time())}.json'
                    
                    with open(output_path, 'w', encoding='utf-8') as f:
                        json.dump(results, f, ensure_ascii=False, indent=2)
                    
                    summary = f"Processed {len(results)} items successfully!"
                    json_data = json.dumps(results, indent=2)  # Prepare JSON for QR code
                    return str(output_path), summary, json_data  # Return JSON for editor
                else:
                    return None, "No valid content to process.", ""
            
            except Exception as e:
                logger.error(f"Processing error: {e}")
                return None, f"Error: {str(e)}", ""
        
        def generate_qr(json_data):
            """Generate QR code from JSON data and return the file path."""
            if json_data:
                return generate_qr_code(json_data)
            return None
        
        process_btn.click(
            process_all_inputs, 
            inputs=[url_input, file_input, text_input, scratchpad], 
            outputs=[output_file, output_text, json_editor]  # Update outputs to include JSON editor
        )
        
        qr_btn.click(
            generate_qr, 
            inputs=json_editor, 
            outputs=qr_output
        )
        
        gr.Markdown("""
        ### Usage Guidelines
        - **URL Processing**: Enter valid HTTP/HTTPS URLs
        - **File Input**: Upload text files or ZIP archives
        - **Text Input**: Direct text processing
        - **JSON Editor**: View and edit your JSON data
        - **Scratchpad**: Quick notes or text collections
        - Advanced cleaning and validation included
        """)
    
    return interface

def main():
    # Configure system settings
    mimetypes.init()
    
    # Create and launch interface
    interface = create_interface()
    
    # Launch with proper configuration
    interface.launch(
        server_name="0.0.0.0",
        server_port=7860,
        show_error=True,
        share=False,
        inbrowser=True,
        debug=True
    )

if __name__ == "__main__":
    main()