File size: 9,396 Bytes
7f65bf9
 
 
 
e6ed86a
 
7f65bf9
 
 
 
c3b1d58
 
7f65bf9
e6ed86a
 
 
7f65bf9
c3b1d58
7f65bf9
554b5c7
7f65bf9
c3b1d58
 
7f65bf9
 
e08a69a
c3b1d58
 
7f65bf9
 
 
 
 
 
 
 
 
 
e6ed86a
7f65bf9
e6ed86a
 
554b5c7
e6ed86a
7f65bf9
e6ed86a
 
7f65bf9
e6ed86a
 
 
 
 
7f65bf9
e6ed86a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f65bf9
e6ed86a
 
 
 
7f65bf9
e6ed86a
 
 
 
 
7f65bf9
e6ed86a
7f65bf9
 
e6ed86a
 
 
 
c3b1d58
e6ed86a
 
 
 
 
 
 
 
e08a69a
e6ed86a
 
 
 
e08a69a
e6ed86a
 
 
 
 
e08a69a
e6ed86a
e08a69a
554b5c7
e6ed86a
 
 
 
 
 
 
 
 
7f65bf9
e6ed86a
 
 
 
 
 
 
 
 
 
7f65bf9
e6ed86a
 
7f65bf9
 
e6ed86a
 
 
 
 
 
554b5c7
e6ed86a
 
554b5c7
e6ed86a
 
 
 
 
 
 
 
554b5c7
e6ed86a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f65bf9
e6ed86a
 
 
 
 
 
 
 
 
 
554b5c7
e6ed86a
 
 
 
 
 
 
 
554b5c7
e6ed86a
 
 
 
 
 
 
7f65bf9
e6ed86a
 
 
 
554b5c7
e6ed86a
 
 
 
 
 
 
 
554b5c7
e6ed86a
 
 
 
 
7f65bf9
 
e6ed86a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
554b5c7
7f65bf9
17fdb3b
 
7f65bf9
e6ed86a
 
 
 
 
 
 
 
 
7f65bf9
 
 
17fdb3b
 
554b5c7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
"""
Advanced URL & Text Processing Suite - Main Application
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

A sophisticated Gradio interface with URL processing, file manipulation, QR operations,
and advanced data chat capabilities.
"""

import gradio as gr
import logging
import json
import os
import sys
import zipfile
import pandas as pd
import numpy as np
from datetime import datetime
from pathlib import Path
from typing import Dict, List, Optional, Union, Any, Tuple

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s.%(msecs)03d [%(levelname)s] %(name)s - %(message)s',
    datefmt='%Y-%m-%d %H:%M:%S'
)
logger = logging.getLogger(__name__)

# Modern UI Configuration
THEME = gr.themes.Soft(
    primary_hue="indigo",
    secondary_hue="blue",
    neutral_hue="slate",
    spacing_size=gr.themes.sizes.spacing_md,
    radius_size=gr.themes.sizes.radius_md,
    text_size=gr.themes.sizes.text_md,
)

class DataChatProcessor:
    def __init__(self):
        self.trained_data = {}
        self.current_dataset = None
        
    def process_zip_file(self, file_obj, mode):
        try:
            if not file_obj:
                return "Please upload a ZIP file", []
            
            # Extract ZIP contents
            with zipfile.ZipFile(file_obj.name, 'r') as zip_ref:
                temp_dir = Path('temp_data')
                temp_dir.mkdir(exist_ok=True)
                zip_ref.extractall(temp_dir)
            
            # Process based on mode
            if mode == "TrainedOnData":
                return self._train_on_data(temp_dir)
            else:  # TalkAboutData
                return self._analyze_data(temp_dir)
                
        except Exception as e:
            logger.error(f"Error processing ZIP file: {e}")
            return f"Error: {str(e)}", []
    
    def _train_on_data(self, data_dir):
        try:
            datasets = []
            for file in data_dir.glob('**/*.csv'):
                df = pd.read_csv(file)
                datasets.append({
                    'name': file.name,
                    'data': df,
                    'summary': {
                        'rows': len(df),
                        'columns': len(df.columns),
                        'dtypes': df.dtypes.astype(str).to_dict()
                    }
                })
            
            self.trained_data = {
                'datasets': datasets,
                'timestamp': datetime.now().isoformat()
            }
            
            summary = f"Trained on {len(datasets)} datasets"
            messages = [
                {"role": "assistant", "content": "Training completed successfully."},
                {"role": "assistant", "content": summary}
            ]
            
            return summary, messages
            
        except Exception as e:
            logger.error(f"Error training on data: {e}")
            return f"Error during training: {str(e)}", []
    
    def _analyze_data(self, data_dir):
        try:
            analyses = []
            for file in data_dir.glob('**/*.csv'):
                df = pd.read_csv(file)
                analyses.append({
                    'file': file.name,
                    'shape': df.shape,
                    'dtypes': df.dtypes.astype(str).to_dict()
                })
            
            self.current_dataset = {
                'analyses': analyses,
                'timestamp': datetime.now().isoformat()
            }
            
            summary = f"Analyzed {len(analyses)} files"
            messages = [
                {"role": "assistant", "content": "Analysis completed successfully."},
                {"role": "assistant", "content": summary}
            ]
            
            return summary, messages
            
        except Exception as e:
            logger.error(f"Error analyzing data: {e}")
            return f"Error during analysis: {str(e)}", []
    
    def chat(self, message, history, mode):
        if not message:
            return "", history
        
        history.append({"role": "user", "content": message})
        
        try:
            if mode == "TrainedOnData":
                if not self.trained_data:
                    response = "Please upload and train on data first."
                else:
                    response = self._generate_trained_response(message)
            else:
                if not self.current_dataset:
                    response = "Please upload data for analysis first."
                else:
                    response = self._generate_analysis_response(message)
            
            history.append({"role": "assistant", "content": response})
            return "", history
            
        except Exception as e:
            logger.error(f"Error in chat: {e}")
            history.append({"role": "assistant", "content": f"Error: {str(e)}"})
            return "", history
    
    def _generate_trained_response(self, message):
        datasets = self.trained_data['datasets']
        
        if "how many" in message.lower():
            return f"There are {len(datasets)} datasets."
        
        if "summary" in message.lower():
            summaries = []
            for ds in datasets:
                summaries.append(
                    f"Dataset '{ds['name']}': {ds['summary']['rows']} rows, "
                    f"{ds['summary']['columns']} columns"
                )
            return "\n".join(summaries)
        
        return "I can help you analyze the trained datasets. Ask about number of datasets or summaries."
    
    def _generate_analysis_response(self, message):
        analyses = self.current_dataset['analyses']
        
        if "how many" in message.lower():
            return f"There are {len(analyses)} files."
        
        if "summary" in message.lower():
            summaries = []
            for analysis in analyses:
                summaries.append(
                    f"File '{analysis['file']}': {analysis['shape'][0]} rows, "
                    f"{analysis['shape'][1]} columns"
                )
            return "\n".join(summaries)
        
        return "I can help you explore the current dataset. Ask about file count or summaries."

def create_interface():
    data_chat = DataChatProcessor()
    
    with gr.Blocks(theme=THEME) as interface:
        gr.Markdown(
            """
            # 🌐 Advanced Data Processing & Analysis Suite
            Enterprise-grade toolkit for data processing, analysis, and interactive chat capabilities.
            """
        )
        
        with gr.Tab("πŸ’¬ DataChat"):
            with gr.Row():
                # Left column for file upload and mode selection
                with gr.Column(scale=1):
                    data_file = gr.File(
                        label="Upload ZIP File",
                        file_types=[".zip"]
                    )
                    
                    mode = gr.Radio(
                        choices=["TrainedOnData", "TalkAboutData"],
                        value="TrainedOnData",
                        label="Chat Mode"
                    )
                    
                    process_btn = gr.Button("Process Data", variant="primary")
                    
                    status_output = gr.Textbox(
                        label="Status",
                        interactive=False
                    )
                
                # Right column for chat interface
                with gr.Column(scale=2):
                    chatbot = gr.Chatbot(
                        label="Chat History",
                        height=400,
                        show_label=True,
                        type="messages"  # Specify OpenAI-style message format
                    )
                    
                    msg = gr.Textbox(
                        label="Your Message",
                        placeholder="Ask questions about your data...",
                        lines=2
                    )
                    
                    with gr.Row():
                        submit_btn = gr.Button("Send", variant="primary")
                        clear_btn = gr.Button("Clear Chat", variant="secondary")
        
        # Event handlers
        process_btn.click(
            fn=data_chat.process_zip_file,
            inputs=[data_file, mode],
            outputs=[status_output, chatbot]
        )
        
        submit_btn.click(
            fn=data_chat.chat,
            inputs=[msg, chatbot, mode],
            outputs=[msg, chatbot]
        )
        
        msg.submit(
            fn=data_chat.chat,
            inputs=[msg, chatbot, mode],
            outputs=[msg, chatbot]
        )
        
        clear_btn.click(
            fn=lambda: ([], "Chat cleared"),
            outputs=[chatbot, status_output]
        )
        
        return interface

def main():
    try:
        interface = create_interface()
        if interface:
            interface.launch(
                server_name="0.0.0.0",
                server_port=8000
            )
        else:
            logger.error("Failed to create interface")
            sys.exit(1)
    except Exception as e:
        logger.error(f"Application startup error: {e}", exc_info=True)
        sys.exit(1)

if __name__ == "__main__":
    main()