urld / app2.py
acecalisto3's picture
Update app2.py
1d25250 verified
raw
history blame
32.1 kB
import json
import os
import re
import logging
import mimetypes
import time
from PIL import Image
import zxing
import io
import zipfile
import tempfile
from datetime import datetime
from typing import List, Dict, Optional, Union
from pathlib import Path
import requests
import validators
import gradio as gr
from bs4 import BeautifulSoup
from fake_useragent import UserAgent
from cleantext import clean
import qrcode# Setup logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - [%(filename)s:%(lineno)d] - %(message)s',
handlers=[
logging.StreamHandler(),
logging.FileHandler('app.log', encoding='utf-8')
]
)
logger = logging.getLogger(__name__)
# Ensure output directories exist
Path('output/qr_codes').mkdir(parents=True, exist_ok=True)
class URLProcessor:
def __init__(self):
self.session = requests.Session()
self.timeout = 10
self.max_retries = 3
self.request_delay = 1.0
self.respect_robots = True
self.use_proxy = False
self.proxy_url = None
# Update session headers
self.session.headers.update({
'User-Agent': UserAgent().random,
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8',
'Accept-Language': 'en-US,en;q=0.5',
'Accept-Encoding': 'gzip, deflate, br',
'Connection': 'keep-alive',
'Upgrade-Insecure-Requests': '1'
})
if self.use_proxy and self.proxy_url:
self.session.proxies = {
'http': self.proxy_url,
'https': self.proxy_url
}
def check_robots_txt(self, url: str) -> bool:
"""Check if URL is allowed by robots.txt"""
if not self.respect_robots:
return True
try:
from urllib.parse import urlparse
from urllib.robotparser import RobotFileParser
parsed_url = urlparse(url)
robots_url = f"{parsed_url.scheme}://{parsed_url.netloc}/robots.txt"
rp = RobotFileParser()
rp.set_url(robots_url)
rp.read()
return rp.can_fetch(self.session.headers['User-Agent'], url)
except Exception as e:
logger.warning(f"Error checking robots.txt: {e}")
return True
def fetch_content(self, url: str) -> Optional[Dict]:
"""Fetch content with built-in rate limiting and robots.txt checking"""
if not self.check_robots_txt(url):
logger.warning(f"URL {url} is disallowed by robots.txt")
return None
time.sleep(self.request_delay) # Basic rate limiting
for attempt in range(self.max_retries):
try:
if 'drive.google.com' in url:
return self._handle_google_drive(url)
if 'calendar.google.com' in url:
return self._handle_google_calendar(url)
return self._fetch_html_content(url)
except Exception as e:
logger.error(f"Attempt {attempt + 1} failed: {e}")
if attempt < self.max_retries - 1:
time.sleep(self.request_delay * (attempt + 1))
return None
def advanced_text_cleaning(self, text: str) -> str:
"""Robust text cleaning with version compatibility"""
try:
cleaned_text = clean(
text,
fix_unicode=True,
to_ascii=True,
lower=True,
no_line_breaks=True,
no_urls=True,
no_emails=True,
no_phone_numbers=True,
no_numbers=False,
no_digits=False,
no_currency_symbols=True,
no_punct=False
).strip()
return cleaned_text
except Exception as e:
logger.warning(f"Text cleaning error: {e}. Using fallback method.")
text = re.sub(r'[\x00-\x1F\x7F-\x9F]', '', text)
text = text.encode('ascii', 'ignore').decode('ascii')
text = re.sub(r'\s+', ' ', text)
return text.strip()
def validate_url(self, url: str) -> Dict:
"""Validate URL format and accessibility"""
try:
if not validators.url(url):
return {'is_valid': False, 'message': 'Invalid URL format'}
response = self.session.head(url, timeout=self.timeout)
response.raise_for_status()
return {'is_valid': True, 'message': 'URL is valid and accessible'}
except Exception as e:
return {'is_valid': False, 'message': f'URL validation failed: {str(e)}'}
def fetch_content(self, url: str) -> Optional[Dict]:
"""Universal content fetcher with special case handling"""
try:
if 'drive.google.com' in url:
return self._handle_google_drive(url)
if 'calendar.google.com' in url and 'ical' in url:
return self._handle_google_calendar(url)
return self._fetch_html_content(url)
except Exception as e:
logger.error(f"Content fetch failed: {e}")
return None
def _handle_google_drive(self, url: str) -> Optional[Dict]:
"""Process Google Drive file links"""
try:
file_id = re.search(r'/file/d/([a-zA-Z0-9_-]+)', url)
if not file_id:
logger.error(f"Invalid Google Drive URL: {url}")
return None
direct_url = f"https://drive.google.com/uc?export=download&id={file_id.group(1)}"
response = self.session.get(direct_url, timeout=self.timeout)
response.raise_for_status()
return {
'content': response.text,
'content_type': response.headers.get('Content-Type', ''),
'timestamp': datetime.now().isoformat()
}
except Exception as e:
logger.error(f"Google Drive processing failed: {e}")
return None
def _handle_google_calendar(self, url: str) -> Optional[Dict]:
"""Process Google Calendar ICS feeds"""
try:
response = self.session.get(url, timeout=self.timeout)
response.raise_for_status()
return {
'content': response.text,
'content_type': 'text/calendar',
'timestamp': datetime.now().isoformat()
}
except Exception as e:
logger.error(f"Calendar fetch failed: {e}")
return None
def _fetch_html_content(self, url: str) -> Optional[Dict]:
"""Standard HTML content processing"""
try:
response = self.session.get(url, timeout=self.timeout)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
for element in soup(['script', 'style', 'nav', 'footer', 'header', 'meta', 'link']):
element.decompose()
main_content = soup.find('main') or soup.find('article') or soup.body
if main_content is None:
logger.warning(f"No main content found for URL: {url}")
return {
'content': '',
'content_type': response.headers.get('Content-Type', ''),
'timestamp': datetime.now().isoformat()
}
text_content = main_content.get_text(separator='\n', strip=True)
cleaned_content = self.advanced_text_cleaning(text_content)
return {
'content': cleaned_content,
'content_type': response.headers.get('Content-Type', ''),
'timestamp': datetime.now().isoformat()
}
except Exception as e:
logger.error(f"HTML processing failed: {e}")
return None
class FileProcessor:
"""Class to handle file processing"""
def __init__(self, max_file_size: int = 2 * 1024 * 1024 * 1024): # 2GB default
self.max_file_size = max_file_size
self.supported_text_extensions = {'.txt', '.md', '.csv', '.json', '.xml'}
def is_text_file(self, filepath: str) -> bool:
"""Check if file is a text file"""
try:
mime_type, _ = mimetypes.guess_type(filepath)
return (mime_type and mime_type.startswith('text/')) or \
(os.path.splitext(filepath)[1].lower() in self.supported_text_extensions)
except Exception:
return False
def process_file(self, file) -> List[Dict]:
"""Process uploaded file with enhanced error handling"""
if not file:
return []
dataset = []
try:
file_size = os.path.getsize(file.name)
if file_size > self.max_file_size:
logger.warning(f"File size ({file_size} bytes) exceeds maximum allowed size")
return []
with tempfile.TemporaryDirectory() as temp_dir:
if zipfile.is_zipfile(file.name):
dataset.extend(self._process_zip_file(file.name, temp_dir))
else:
dataset.extend(self._process_single_file(file))
except Exception as e:
logger.error(f"Error processing file: {str(e)}")
return []
return dataset
def _process_zip_file(self, zip_path: str, temp_dir: str) -> List[Dict]:
"""Process ZIP file contents"""
results = []
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
zip_ref.extractall(temp_dir)
for root, _, files in os.walk(temp_dir):
for filename in files:
filepath = os.path.join(root, filename)
if self.is_text_file(filepath):
try:
with open(filepath, 'r', encoding='utf-8', errors='ignore') as f:
content = f.read()
if content.strip():
results.append({
"source": "file",
"filename": filename,
"content": content,
"timestamp": datetime.now ().isoformat()
})
except Exception as e:
logger.error(f"Error reading file {filename}: {str(e)}")
return results
def _process_single_file(self, file) -> List[Dict]:
"""Process a single file"""
try:
file_stat = os.stat(file.name)
if file_stat.st_size > 100 * 1024 * 1024: # 100MB
logger.info(f"Processing large file: {file.name} ({file_stat.st_size} bytes)")
content = ""
with open(file.name, 'r', encoding='utf-8', errors='ignore') as f:
content = f.read(1 * 1024 * 1024) # First 1MB
content += "\n...[Content truncated due to large file size]...\n"
f.seek(max(0, file_stat.st_size - 1 * 1024 * 1024))
content += f.read() # Last 1MB
else:
with open(file.name, 'r', encoding='utf-8', errors='ignore') as f:
content = f.read()
return [{
'source': 'file',
'filename': os.path.basename(file.name),
'file_size': file_stat.st_size,
'mime_type': mimetypes.guess_type(file.name)[0],
'created': datetime.fromtimestamp(file_stat.st_ctime).isoformat(),
'modified': datetime.fromtimestamp(file_stat.st_mtime).isoformat(),
'content': content,
'timestamp': datetime.now().isoformat()
}]
except Exception as e:
logger.error(f"File processing error: {e}")
return []
def clean_json(data: Union[str, Dict]) -> Optional[Dict]:
"""Clean and validate JSON data"""
try:
if isinstance(data, str):
data = data.strip()
data = json.loads(data)
cleaned = json.loads(json.dumps(data))
return cleaned
except json.JSONDecodeError as e:
logger.error(f"JSON cleaning error: {e}")
return None
except Exception as e:
logger.error(f"Unexpected error while cleaning JSON: {e}")
return None
def generate_qr_code(data: Union[str, Dict], combined: bool = True) -> List[str]:
"""Generate QR code(s) from data"""
try:
output_dir = Path('output/qr_codes')
output_dir.mkdir(parents=True, exist_ok=True)
if combined:
cleaned_data = clean_json(data)
if cleaned_data:
qr = qrcode.QRCode(
version=None,
error_correction=qrcode.constants.ERROR_CORRECT_L,
box_size=10,
border=4,
)
json_str = json.dumps(cleaned_data, ensure_ascii=False)
qr.add_data(json_str)
qr.make(fit=True)
img = qr.make_image(fill_color="black", back_color="white")
output_path = output_dir / f'combined_qr_{int(time.time())}.png'
img.save(str(output_path))
return [str(output_path)]
else:
if isinstance(data, list):
paths = []
for idx, item in enumerate(data):
cleaned_item = clean_json(item)
if cleaned_item:
qr = qrcode.QRCode(
version=None,
error_correction=qrcode.constants.ERROR_CORRECT_L,
box_size=10,
border=4,
)
json_str = json.dumps(cleaned_item, ensure_ascii=False)
qr.add_data(json_str)
qr.make(fit=True)
img = qr.make_image(fill_color="black", back_color="white")
output_path = output_dir / f'item_{idx}_qr_{int(time.time())}.png'
img.save(str(output_path))
paths.append(str(output_path))
return paths
else:
cleaned_item = clean_json(data)
if cleaned_item:
qr = qrcode.QRCode(
version=None,
error_correction=qrcode.constants.ERROR_CORRECT_L,
box_size=10,
border=4,
)
json_str = json.dumps(cleaned_item, ensure_ascii=False)
qr.add_data(json_str)
qr.make(fit=True)
img = qrcode.make_image(fill_color="black", back_color="white")
output_path = output_dir / f'single_qr_{int(time.time())}.png'
img.save(str(output_path))
return [str(output_path)]
return []
except Exception as e:
logger.error(f"QR generation error: {e}")
return []
def decode_qr_code(image_path: str) -> Optional[str]:
"""Decode QR code from an image file using ZXing"""
try:
reader = zxing.BarCodeReader()
result = reader.decode(image_path)
if result and result.parsed:
return result.parsed
logger.warning("No QR code found in image")
return None
except Exception as e:
logger.error(f"QR decoding error: {e}")
return None
def decode_qr(image) -> List[str]:
"""Decode all QR codes found in an image using ZXing"""
try:
if isinstance(image, str):
image_path = image
else:
# Save temporary image if input is not a path
with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as tmp:
Image.fromarray(image).save(tmp.name)
image_path = tmp.name
reader = zxing.BarCodeReader()
result = reader.decode(image_path)
if result and result.parsed:
return [result.parsed]
return []
except Exception as e:
logger.error(f"QR decoding error: {e}")
return []
raise ValueError("Unable to decode QR code")
except Exception as e:
logger.error(f"QR decoding error: {e}")
return None, None # Return None for both data and resolution in case of error
def datachat_trained(data_input: str, query: str) -> str:
"""Handle trained data interaction logic"""
data = clean_json(data_input)
if not data:
return "Invalid JSON data provided."
return f"[Trained Mode]\nData: {json.dumps(data, indent=2)}\nQuery: {query}"
def datachat_simple(data_input: str, query: str) -> str:
"""Handle simple chat interaction logic"""
data = clean_json(data_input)
if not data:
return "Invalid JSON data provided."
return f"[Chat Mode]\nData: {json.dumps(data, indent=2)}\nQuestion: {query}"
def datachat_interface(mode: str, data_source: str, json_input: str, qr_image: str, query: str) -> str:
"""Interface for DataChat functionality"""
data = None
if data_source == "JSON Input":
data = json_input
elif data_source == "QR Code":
try:
decoded_data = decode_qr_code(qr_image)
data = decoded_data
if not data:
return "No QR code found in the provided image."
except Exception as e:
return f"Invalid QR code data provided: {e}"
else:
return "No valid data source selected."
if mode == "Trained with Data":
return datachat_trained(data, query)
elif mode == "Chat about Data":
return datachat_simple(data, query)
else:
return "Invalid mode selected."
def create_interface():
"""Create a comprehensive Gradio interface with advanced features"""
css = """
.container { max-width: 1200px; margin: auto; }
.warning { background-color: #fff3cd; color: #856404; padding: 10px; border-radius: 4px; }
.error { background-color: #f8d7da; color: #721c24; padding: 10px; border-radius: 4px; }
.success { background-color: #d4edda; color: #155724; padding: 10px; border-radius: 4px; }
"""
with gr.Blocks(css=css, title="Advanced Data Processor & QR Code Generator") as interface:
gr.Markdown("# 🌐 Advanced Data Processing & QR Code Generator")
# URL Extraction Tab
with gr.Tab("URL Extraction"):
url_input = gr.Textbox(label="URL to Process", placeholder="https://example.com")
depth_slider = gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Crawl Depth (Higher values may affect performance)")
respect_robots = gr.Checkbox(label="Respect robots.txt", value=True)
extract_btn = gr.Button("Extract Content")
url_output = gr.JSON(label="Extracted Data")
download_btn = gr.Button("Download Results as ZIP")
download_output = gr.File(label="Download")
# Warning about depth
gr.Markdown("""
<div class="warning">
⚠️ <strong>Warning:</strong> Higher depth values (>2) may significantly increase processing time and resource usage.
</div>
""")
# URL processor instance
url_processor = URLProcessor()
def process_url(url, depth, respect_robots):
url_processor.respect_robots = respect_robots
results = []
try:
# Validate URL
validation = url_processor.validate_url(url)
if not validation['is_valid']:
return {"error": validation['message']}
# Process with depth
processed_urls = set()
urls_to_process = [(url, 0)] # (url, current_depth)
while urls_to_process:
current_url, current_depth = urls_to_process.pop(0)
if current_url in processed_urls:
continue
processed_urls.add(current_url)
content = url_processor.fetch_content(current_url)
if content:
results.append({
"url": current_url,
"content": content.get('content', ''),
"content_type": content.get('content_type', ''),
"timestamp": datetime.now().isoformat()
})
# If we haven't reached max depth, extract and queue more URLs
if current_depth < depth:
soup = BeautifulSoup(content.get('content', ''), 'html.parser')
for link in soup.find_all('a', href=True):
next_url = link['href']
if next_url.startswith('/'):
# Convert relative URL to absolute
from urllib.parse import urlparse, urljoin
parsed_url = urlparse(current_url)
base_url = f"{parsed_url.scheme}://{parsed_url.netloc}"
next_url = urljoin(base_url, next_url)
if validators.url(next_url) and next_url not in processed_urls:
urls_to_process.append((next_url, current_depth + 1))
return results
except Exception as e:
logger.error(f"URL processing error: {e}")
return {"error": str(e)}
def create_download_zip(results):
if not results or (isinstance(results, dict) and 'error' in results):
return None
try:
# Create a temporary zip file
with tempfile.NamedTemporaryFile(suffix='.zip', delete=False) as tmp:
with zipfile.ZipFile(tmp.name, 'w') as zipf:
# Add JSON data
zipf.writestr('extracted_data.json', json.dumps(results, indent=2))
# Add individual text files for each URL
for idx, item in enumerate(results):
if 'content' in item:
zipf.writestr(f'content_{idx}_{int(time.time())}.txt', item['content'])
return tmp.name
except Exception as e:
logger.error(f"Error creating ZIP file: {e}")
return None
extract_btn.click(process_url, [url_input, depth_slider, respect_robots], url_output)
download_btn.click(create_download_zip, [url_output], download_output)
# ZIP File Extractor Tab
with gr.Tab("ZIP File Extractor"):
zip_file_input = gr.File(label="Upload ZIP File")
extract_zip_btn = gr.Button("Extract and Process")
zip_output = gr.JSON(label="Extracted Data")
zip_qr_btn = gr.Button("Generate QR Code")
zip_qr_output = gr.Image(label="QR Code")
file_processor = FileProcessor()
def process_zip_file(file):
if not file:
return {"error": "No file uploaded"}
try:
results = file_processor.process_file(file)
return results
except Exception as e:
logger.error(f"ZIP processing error: {e}")
return {"error": str(e)}
def generate_zip_qr(data):
if not data or (isinstance(data, dict) and 'error' in data):
return None
try:
return file_processor.generate_qr_code(data, combined=True)[0]
except Exception as e:
logger.error(f"QR generation error: {e}")
return None
extract_zip_btn.click(process_zip_file, [zip_file_input], zip_output)
zip_qr_btn.click(generate_zip_qr, [zip_output], zip_qr_output)
# Raw Text to JSON Tab
with gr.Tab("Text to JSON"):
text_input = gr.Textbox(lines=10, label="Raw Text Input")
json_structure = gr.Dropdown(
choices=["Simple", "Structured", "Key-Value Pairs"],
label="JSON Structure",
value="Simple"
)
convert_btn = gr.Button("Convert to JSON")
json_output = gr.JSON(label="JSON Output")
combine_json_btn = gr.Button("Combine with Previous JSON")
previous_json = gr.Textbox(lines=5, label="Previous JSON (Optional)")
combined_output = gr.JSON(label="Combined JSON")
text_qr_btn = gr.Button("Generate QR Code")
text_qr_output = gr.Image(label="QR Code")
def convert_text_to_json(text, structure):
if not text.strip():
return {"error": "No text provided"}
try:
if structure == "Simple":
return {
"text": text,
"timestamp": datetime.now().isoformat()
}
elif structure == "Structured":
lines = text.split('\n')
paragraphs = []
current_para = []
for line in lines:
if line.strip():
current_para.append(line)
elif current_para:
paragraphs.append(' '.join(current_para))
current_para = []
if current_para:
paragraphs.append(' '.join(current_para))
return {
"title": paragraphs[0] if paragraphs else "",
"paragraphs": paragraphs[1:] if len(paragraphs) > 1 else [],
"timestamp": datetime.now().isoformat()
}
elif structure == "Key-Value Pairs":
pairs = {}
lines = text.split('\n')
for line in lines:
if ':' in line:
key, value = line.split(':', 1)
pairs[key.strip()] = value.strip()
pairs["timestamp"] = datetime.now().isoformat()
return pairs
return {"error": "Invalid structure selected"}
except Exception as e:
logger.error(f"Text to JSON conversion error: {e}")
return {"error": str(e)}
def combine_json_data(current, previous):
if not current or (isinstance(current, dict) and 'error' in current):
return {"error": "No valid current JSON"}
try:
if not previous.strip():
return current
prev_json = json.loads(previous)
# Determine how to combine based on types
if isinstance(prev_json, list) and isinstance(current, list):
return prev_json + current
elif isinstance(prev_json, list):
return prev_json + [current]
elif isinstance(current, list):
return [prev_json] + current
else:
# Both are objects, merge them
combined = {**prev_json, **current}
# Add a combined timestamp
combined["combined_timestamp"] = datetime.now().isoformat()
return combined
except json.JSONDecodeError:
return {"error": "Previous JSON is invalid"}
except Exception as e:
logger.error(f"JSON combination error: {e}")
return {"error": str(e)}
convert_btn.click(convert_text_to_json, [text_input, json_structure], json_output)
combine_json_btn.click(combine_json_data, [json_output, previous_json], combined_output)
text_qr_btn.click(generate_zip_qr, [json_output], text_qr_output)
# DataChat Tab (existing)
with gr.Tab("DataChat"):
mode = gr.Radio(["Trained with Data", "Chat about Data"], label="Mode")
data_source = gr.Radio(["JSON Input", "QR Code"], label="Data Source")
json_input = gr.Textbox(lines=8, label="JSON Data")
qr_image = gr.Image(label="QR Code Image", type="filepath")
query = gr.Textbox(label="Query")
submit_btn = gr.Button("Submit")
output = gr.Textbox(label="Response")
submit_btn.click(datachat_interface, [mode, data_source, json_input, qr_image, query], output)
# QR Generator Tab (existing)
with gr.Tab("QR Generator"):
qr_input = gr.Textbox(lines=8, label="Input JSON for QR")
generate_btn = gr.Button("Generate QR")
qr_output = gr.Image(label="Generated QR Code")
def generate_qr(json_data):
data = file_processor.clean_json(json_data)
if data:
return file_processor.generate_qr_code(data)
return None
generate_btn.click(generate_qr, qr_input, qr_output)
return interface
def main():
mimetypes.init()
Path('output/qr_codes').mkdir(parents=True, exist_ok=True)
interface = create_interface()
interface.launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
share=False,
inbrowser=True,
debug=True
)
if __name__ == "__main__":
main()